These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications. Singh P; König TAF; Jaiswal A ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic 3-D wrinkled polymeric shrink film-based SERS substrates for pesticide detection on real-world surfaces. Bhardwaj K; Jaiswal A Analyst; 2023 Jan; 148(3):562-572. PubMed ID: 36562631 [TBL] [Abstract][Full Text] [Related]
4. A SERS-based lateral flow immunochromatographic assay using Raman reporter mediated-gap AuNR@Au nanoparticles as the substrate for the detection of enrofloxacin in food samples. Tian R; Ren Y; Wang T; Cao J; Li J; Deng A Anal Chim Acta; 2023 May; 1257():341152. PubMed ID: 37062566 [TBL] [Abstract][Full Text] [Related]
5. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Saute B; Narayanan R Analyst; 2011 Feb; 136(3):527-32. PubMed ID: 21113557 [TBL] [Abstract][Full Text] [Related]
6. Facile synthesis of Fe Han D; Li B; Chen Y; Wu T; Kou Y; Xue X; Chen L; Liu Y; Duan Q Nanotechnology; 2019 Nov; 30(46):465703. PubMed ID: 31476137 [TBL] [Abstract][Full Text] [Related]
7. 3D hot spot construction on the hydrophobic interface with SERS tags for quantitative detection of pesticide residues on food surface. Wang YH; Huang C; Wu X; Liu XF; You EM; Liu SH; Wang A; Jin S; Zhang FL Food Chem; 2025 Jan; 463(Pt 3):141391. PubMed ID: 39332371 [TBL] [Abstract][Full Text] [Related]
8. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Xie T; Cao Z; Li Y; Li Z; Zhang FL; Gu Y; Han C; Yang G; Qu L Food Chem; 2022 Jul; 381():132208. PubMed ID: 35123223 [TBL] [Abstract][Full Text] [Related]
9. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C; Wu X; Dong P; Chen J; Xiao R Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319 [TBL] [Abstract][Full Text] [Related]
10. Site-selective growth and plasmonic spectral properties of L-shaped Janus Au-Ag gold nanodumbbells for surface-enhanced Raman scattering. Du HF; Zhu J; Weng GJ; Li JJ; Li X; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 299():122862. PubMed ID: 37220676 [TBL] [Abstract][Full Text] [Related]
11. Hierarchically Assembled Plasmonic Metal-Dielectric-Metal Hybrid Nano-Architectures for High-Sensitivity SERS Detection. Pandey P; Seo MK; Shin KH; Lee YW; Sohn JI Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159747 [TBL] [Abstract][Full Text] [Related]
12. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering. Li J; Liu Z; Tian D; Li B; Shao L; Lou Z Nanoscale; 2022 Apr; 14(14):5561-5568. PubMed ID: 35343993 [TBL] [Abstract][Full Text] [Related]
13. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142 [TBL] [Abstract][Full Text] [Related]
14. Ultrasensitive SERS Analysis of Liquid and Gaseous Putrescine and Cadaverine by a 3D-Rosettelike Nanostructure-Decorated Flexible Porous Substrate. Sun J; Zhang Z; Li H; Yin H; Hao P; Dai X; Jiang K; Liu C; Zhang T; Yin J; Song Y; Zhou W; Gao J Anal Chem; 2022 Apr; 94(13):5273-5283. PubMed ID: 35319200 [TBL] [Abstract][Full Text] [Related]
15. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245 [TBL] [Abstract][Full Text] [Related]
16. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Chen Z; Sun Y; Shi J; Zhang W; Zhang X; Huang X; Zou X; Li Z; Wei R Food Chem; 2022 Feb; 370():131276. PubMed ID: 34662790 [TBL] [Abstract][Full Text] [Related]
17. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films. Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395 [TBL] [Abstract][Full Text] [Related]
18. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
19. Flexible Au@AgNRs/CMC/qPCR film with enhanced sensitivity, homogeneity and stability for in-situ extraction and SERS detection of thiabendazole on fruits. Hu B; Pu H; Sun DW Food Chem; 2023 Oct; 423():135840. PubMed ID: 37169667 [TBL] [Abstract][Full Text] [Related]
20. Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced Raman scattering. Jaiswal A; Tian L; Tadepalli S; Liu KK; Fei M; Farrell ME; Pellegrino PM; Singamaneni S Small; 2014 Nov; 10(21):4287-92. PubMed ID: 25045064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]