These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37743768)

  • 1. Computational performance of musculoskeletal simulation in OpenSim Moco using parallel computing.
    Denton AN; Umberger BR
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3777. PubMed ID: 37743768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OpenSim Moco: Musculoskeletal optimal control.
    Dembia CL; Bianco NA; Falisse A; Hicks JL; Delp SL
    PLoS Comput Biol; 2020 Dec; 16(12):e1008493. PubMed ID: 33370252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
    Lee LF; Umberger BR
    PeerJ; 2016; 4():e1638. PubMed ID: 26835184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithmic differentiation improves the computational efficiency of OpenSim-based trajectory optimization of human movement.
    Falisse A; Serrancolí G; Dembia CL; Gillis J; De Groote F
    PLoS One; 2019; 14(10):e0217730. PubMed ID: 31622352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
    Seth A; Hicks JL; Uchida TK; Habib A; Dembia CL; Dunne JJ; Ong CF; DeMers MS; Rajagopal A; Millard M; Hamner SR; Arnold EM; Yong JR; Lakshmikanth SK; Sherman MA; Ku JP; Delp SL
    PLoS Comput Biol; 2018 Jul; 14(7):e1006223. PubMed ID: 30048444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A direct collocation framework for optimal control simulation of pedaling using OpenSim.
    Park S; Caldwell GE; Umberger BR
    PLoS One; 2022; 17(2):e0264346. PubMed ID: 35192643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.
    Valente G; Crimi G; Vanella N; Schileo E; Taddei F
    Comput Methods Programs Biomed; 2017 Dec; 152():85-92. PubMed ID: 29054263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-source software library for real-time inertial measurement unit data-based inverse kinematics using OpenSim.
    Lavikainen J; Vartiainen P; Stenroth L; Karjalainen PA
    PeerJ; 2023; 11():e15097. PubMed ID: 37038471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OpenSim: open-source software to create and analyze dynamic simulations of movement.
    Delp SL; Anderson FC; Arnold AS; Loan P; Habib A; John CT; Guendelman E; Thelen DG
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1940-50. PubMed ID: 18018689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.
    Saul KR; Hu X; Goehler CM; Vidt ME; Daly M; Velisar A; Murray WM
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1445-58. PubMed ID: 24995410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
    Mansouri M; Reinbolt JA
    J Biomech; 2012 May; 45(8):1517-21. PubMed ID: 22464351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Multicore Processing for Pandemic Influenza Simulation.
    Eriksson H; Timpka T; Spreco A; Dahlström Ö; Strömgren M; Holm E
    AMIA Annu Symp Proc; 2016; 2016():534-540. PubMed ID: 28269849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for Using IMU-Based Experimental Motion Data in BVH Format for Musculoskeletal Simulations via OpenSim.
    Wechsler I; Wolf A; Fleischmann S; Waibel J; Molz C; Scherb D; Shanbhag J; Franz M; Wartzack S; Miehling J
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OpenSim: a musculoskeletal modeling and simulation framework for
    Seth A; Sherman M; Reinbolt JA; Delp SL
    Procedia IUTAM; 2011; 2():212-232. PubMed ID: 25893160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OpenColab project: OpenSim in Google colaboratory to explore biomechanics on the web.
    Mokhtarzadeh H; Jiang F; Zhao S; Malekipour F
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(9):1055-1063. PubMed ID: 35930042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M; Smale KB; Potvin BM; Benoit DL
    J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.
    Lathrop RL; Chaudhari AM; Siston RA
    J Biomech Eng; 2011 Nov; 133(11):114503. PubMed ID: 22168744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.