These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37744085)

  • 1. Continuous joint velocity estimation using CNN-based deep learning for multi-DoF prosthetic wrist for activities of daily living.
    Meng Z; Kang J
    Front Neurorobot; 2023; 17():1185052. PubMed ID: 37744085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel framework for designing a multi-DoF prosthetic wrist control using machine learning.
    Swami CP; Lenhard N; Kang J
    Sci Rep; 2021 Jul; 11(1):15050. PubMed ID: 34294804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding Multi-DoF Movements Using a CST-Based Force Generation Model With Single-DoF Training.
    Xu Y; Yu Y; Zhao Z; Sheng X
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():974-982. PubMed ID: 38376978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model.
    Gao Z; Tang R; Huang Q; He J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33916907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping Individual Motor Unit Activity to Continuous Three-DoF Wrist Torques: Perspectives for Myoelectric Control.
    Chen C; Yu Y; Sheng X; Meng J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1807-1815. PubMed ID: 37030732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Multi-DoF Wrist Kinematics Estimation Based on a Human-Machine Interface With Electrical-Impedance-Tomography.
    Zheng E; Zhang J; Wang Q; Qiao H
    Front Neurorobot; 2021; 15():734525. PubMed ID: 34658831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph-Driven Simultaneous and Proportional Estimation of Wrist Angle and Grasp Force via High-Density EMG.
    Li D; Kang P; Yu Y; Shull PB
    IEEE J Biomed Health Inform; 2024 May; 28(5):2723-2732. PubMed ID: 38442056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning.
    Ahmed MH; Kutsuzawa K; Hayashibe M
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Measurement of Wrist Movements during the Dart-Throwing Motion Using Inertial Measurement Units.
    Fischer G; Wirth MA; Balocco S; Calcagni M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Joint Angles Estimation of Forearm Motion Using a Regression Model.
    Qin Z; Stapornchaisit S; He Z; Yoshimura N; Koike Y
    Front Neurorobot; 2021; 15():685961. PubMed ID: 34408635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the Continuous Pronation-Supination Movement by Using Multichannel EMG Signal Features and Kalman Filter: Application to Control an Exoskeleton.
    Zhang L; Long J; Zhao R; Cao H; Zhang K
    Front Bioeng Biotechnol; 2021; 9():771255. PubMed ID: 35299701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living?
    Kaufman-Cohen Y; Portnoy S; Levanon Y; Friedman J
    J Mot Behav; 2020; 52(4):456-465. PubMed ID: 31359843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: a case series.
    Lukyanenko P; Dewald HA; Lambrecht J; Kirsch RF; Tyler DJ; Williams MR
    J Neuroeng Rehabil; 2021 Mar; 18(1):50. PubMed ID: 33736656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3-DOF hemi-constrained wrist motion/force detection device for deploying simultaneous myoelectric control.
    Yang W; Yang D; Liu Y; Liu H
    Med Biol Eng Comput; 2018 Sep; 56(9):1669-1681. PubMed ID: 29504071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous estimation of multi-DOF movement from sEMG based on non-negative matrix factorization and L2 regulation.
    Meng M; Zhou G; Ma Y; Xi X
    Med Biol Eng Comput; 2023 Jul; 61(7):1675-1686. PubMed ID: 36853396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study.
    Dewald HA; Lukyanenko P; Lambrecht JM; Anderson JR; Tyler DJ; Kirsch RF; Williams MR
    J Neuroeng Rehabil; 2019 Nov; 16(1):147. PubMed ID: 31752886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations.
    Nowak M; Castellini C
    PLoS One; 2016; 11(9):e0161678. PubMed ID: 27606674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.