These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 37744095)
1. Early Transcriptome Response of Taylor JT; Wang KD; Horwitz B; Kolomiets M; Kenerley CM Front Fungal Biol; 2021; 2():718557. PubMed ID: 37744095 [No Abstract] [Full Text] [Related]
2. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Djonovic S; Vargas WA; Kolomiets MV; Horndeski M; Wiest A; Kenerley CM Plant Physiol; 2007 Nov; 145(3):875-89. PubMed ID: 17885089 [TBL] [Abstract][Full Text] [Related]
3. Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. Morán-Diez ME; Trushina N; Lamdan NL; Rosenfelder L; Mukherjee PK; Kenerley CM; Horwitz BA BMC Genomics; 2015 Jan; 16(1):8. PubMed ID: 25608961 [TBL] [Abstract][Full Text] [Related]
4. A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Crutcher FK; Moran-Diez ME; Ding S; Liu J; Horwitz BA; Mukherjee PK; Kenerley CM Fungal Biol; 2015 Jun; 119(6):476-86. PubMed ID: 25986544 [TBL] [Abstract][Full Text] [Related]
5. Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. Malinich EA; Wang K; Mukherjee PK; Kolomiets M; Kenerley CM BMC Genomics; 2019 Apr; 20(1):280. PubMed ID: 30971198 [TBL] [Abstract][Full Text] [Related]
6. Insights into Metabolic Changes Caused by the Schweiger R; Padilla-Arizmendi F; Nogueira-López G; Rostás M; Lawry R; Brown C; Hampton J; Steyaert JM; Müller C; Mendoza-Mendoza A Mol Plant Microbe Interact; 2021 May; 34(5):524-537. PubMed ID: 33166203 [TBL] [Abstract][Full Text] [Related]
7. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Vargas WA; Mandawe JC; Kenerley CM Plant Physiol; 2009 Oct; 151(2):792-808. PubMed ID: 19675155 [TBL] [Abstract][Full Text] [Related]
8. The Apoplastic Secretome of Nogueira-Lopez G; Greenwood DR; Middleditch M; Winefield C; Eaton C; Steyaert JM; Mendoza-Mendoza A Front Plant Sci; 2018; 9():409. PubMed ID: 29675028 [TBL] [Abstract][Full Text] [Related]
9. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. Gaderer R; Lamdan NL; Frischmann A; Sulyok M; Krska R; Horwitz BA; Seidl-Seiboth V BMC Microbiol; 2015 Jan; 15(1):2. PubMed ID: 25591782 [TBL] [Abstract][Full Text] [Related]
10. Comparative Phenotypic, Genomic, and Transcriptomic Analyses of Two Contrasting Strains of the Plant Beneficial Fungus Pachauri S; Zaid R; Sherkhane PD; Easa J; Viterbo A; Chet I; Horwitz BA; Mukherjee PK Microbiol Spectr; 2023 Jan; 11(2):e0302422. PubMed ID: 36719232 [TBL] [Abstract][Full Text] [Related]
11. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Djonović S; Pozo MJ; Dangott LJ; Howell CR; Kenerley CM Mol Plant Microbe Interact; 2006 Aug; 19(8):838-53. PubMed ID: 16903350 [TBL] [Abstract][Full Text] [Related]
12. Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Lamdan NL; Shalaby S; Ziv T; Kenerley CM; Horwitz BA Mol Cell Proteomics; 2015 Apr; 14(4):1054-63. PubMed ID: 25681119 [TBL] [Abstract][Full Text] [Related]
13. Oxylipins Other Than Jasmonic Acid Are Xylem-Resident Signals Regulating Systemic Resistance Induced by Wang KD; Borrego EJ; Kenerley CM; Kolomiets MV Plant Cell; 2020 Jan; 32(1):166-185. PubMed ID: 31690653 [TBL] [Abstract][Full Text] [Related]
14. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Salas-Marina MA; Isordia-Jasso MI; Islas-Osuna MA; Delgado-Sánchez P; Jiménez-Bremont JF; Rodríguez-Kessler M; Rosales-Saavedra MT; Herrera-Estrella A; Casas-Flores S Front Plant Sci; 2015; 6():77. PubMed ID: 25755658 [TBL] [Abstract][Full Text] [Related]
15. Trichoderma virens Big Ras GTPase-1, a molecular switch for transforming a mutualistic fungus to plants in a deleterious microbe. Dautt-Castro M; Rebolledo-Prudencio OG; Estrada-Rivera M; Islas-Osuna MA; Jijón-Moreno S; Casas-Flores S Microbiol Res; 2024 Jan; 278():127508. PubMed ID: 37864916 [TBL] [Abstract][Full Text] [Related]
16. Analysis of a putative glycosylation site in the Trichoderma virens elicitor SM1 reveals no role in protein dimerization. Crutcher FK; Kenerley CM Biochem Biophys Res Commun; 2019 Feb; 509(3):817-821. PubMed ID: 30638659 [TBL] [Abstract][Full Text] [Related]
17. Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. Vargas WA; Crutcher FK; Kenerley CM New Phytol; 2011 Feb; 189(3):777-789. PubMed ID: 21070245 [TBL] [Abstract][Full Text] [Related]