These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37744784)
1. Influences of Evolution of Pore Structures in Tectonic Coal under Acidization on Methane Desorption. Xie H; Li X; Xue F; Sui H; Zhao J; Cai J; Feng C ACS Omega; 2023 Sep; 8(37):34059-34076. PubMed ID: 37744784 [TBL] [Abstract][Full Text] [Related]
2. Effect of Tectonic Deformation on the Pore System and Methane Adsorption of Anthracite Coal. Zhu M; Jing T; Yuan H; Zhang J ACS Omega; 2024 Aug; 9(32):34250-34258. PubMed ID: 39157146 [TBL] [Abstract][Full Text] [Related]
3. Pore Characteristics and Fractal Dimension Analysis of Tectonic Coal and Primary-Structure Coal: A Case Study of Sanjia Coal Mine in Northern Guizhou. Lin H; Tian S; Jiao A; Cao Z; Song K; Zou Y ACS Omega; 2022 Aug; 7(31):27300-27311. PubMed ID: 35967048 [TBL] [Abstract][Full Text] [Related]
4. Changes in mineral fraction and pore morphology of coal with acidification treatment: contribution of clay minerals to methane adsorption. Wang L; Li Z; Li J; Chen Y; Zhang K; Han X; Xu G Environ Sci Pollut Res Int; 2023 Nov; 30(54):114886-114900. PubMed ID: 37875755 [TBL] [Abstract][Full Text] [Related]
5. Methane Desorption-Diffusion Behaviors in Micropores of Coal under Different Water Displacement Pressures. Ni X; Zhang J; Han L; Liu X Langmuir; 2024 Oct; 40(43):23081-23093. PubMed ID: 39420639 [TBL] [Abstract][Full Text] [Related]
6. Experimental research on the influence of acid on the chemical and pore structure evolution characteristics of Wenjiaba tectonic coal. Li X; Li X; Xu E; Xie H; Sui H; Cai J; He Y PLoS One; 2024; 19(4):e0301923. PubMed ID: 38652724 [TBL] [Abstract][Full Text] [Related]
7. Characteristics and Influence Factors of Natural Desorption in Coal Bodies from Fukang Mining Area, Xinjiang, China. Du L; Huang X; Wang Z; Cheng C; Maimaitizhuma K; Wang H; Wang Z; Zeng Z; Luo B; Yang M; Ouyang Z; Dou W; Zhang B; Li T ACS Omega; 2023 Oct; 8(43):40417-40432. PubMed ID: 37929143 [TBL] [Abstract][Full Text] [Related]
8. Molecular Simulation on Competitive Adsorption Differences of Gas with Different Pore Sizes in Coal. Han Q; Deng C; Gao T; Jin Z Molecules; 2022 Feb; 27(5):. PubMed ID: 35268694 [TBL] [Abstract][Full Text] [Related]
9. Molecular Simulation of the Adsorption Characteristics of Methane in Pores of Coal with Different Metamorphic Degrees. Han Q; Deng C; Jin Z; Gao T Molecules; 2021 Nov; 26(23):. PubMed ID: 34885799 [TBL] [Abstract][Full Text] [Related]
10. Analysis of pulverized tectonic coal gas expansion energy in underground mines and its influence on the environment. Wang Z; Cheng Y; Wang L; Wang C; Lei Y; Jiang Z Environ Sci Pollut Res Int; 2020 Jan; 27(2):1508-1520. PubMed ID: 31755064 [TBL] [Abstract][Full Text] [Related]
11. Effect of Mixed Acid Fluid on the Pore Structure of High Rank Coal and Acid Fluid Optimization. Wang C; Gao J; Zhang X ACS Omega; 2022 Sep; 7(37):33280-33294. PubMed ID: 36157754 [TBL] [Abstract][Full Text] [Related]
12. Experimental Investigation of the Matrix Pore Size Distribution and Inner Surface Fractal Dimension of Different-Structure High Rank Coals. Wang R; Li G; Liu S J Nanosci Nanotechnol; 2021 Jan; 21(1):529-537. PubMed ID: 33213651 [TBL] [Abstract][Full Text] [Related]
13. Mineral Characteristics of Low-Rank Coal and the Effects on the Micro- and Nanoscale Pore-Fractures: A Case Study from the Zhundong Coalfield, Northwest China. Zhou S; Liu D; Cai Y; Wang Y; Yan D J Nanosci Nanotechnol; 2021 Jan; 21(1):460-471. PubMed ID: 33213645 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Evolution of Nanoscale Pores of Different Rank Coals Under Solvent Extraction. Zhang X; Zhang S; Li X; Heng S J Nanosci Nanotechnol; 2021 Jan; 21(1):450-459. PubMed ID: 33213644 [TBL] [Abstract][Full Text] [Related]
15. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance. Ni X; Zhao Z; Wang B; Li Z ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284 [TBL] [Abstract][Full Text] [Related]
16. Acidification-Induced Micronano Mechanical Properties and Microscopic Permeability Enhancement Mechanism of Coal. Xie H; Li X; Sui H; Cai J; Xu E; Zhao J Langmuir; 2024 Feb; 40(8):4496-4513. PubMed ID: 38347737 [TBL] [Abstract][Full Text] [Related]
17. Petrographic and Geochemical Controls on Methane Genesis, Pore Fractal Attributes, and Sorption of Lower Gondwana Coal of Jharia Basin, India. Das PR; Mendhe VA; Kamble AD; Sharma P; Shukla P; Varma AK ACS Omega; 2022 Jan; 7(1):299-324. PubMed ID: 35036701 [TBL] [Abstract][Full Text] [Related]
18. Investigation on the Structure and Fractal Characteristics of Nanopores in High-Rank Coal: Implications for the Methane Adsorption Capacity. Yang Y; Yu K; Ju Y; Hu Q; Yu B; Qiao P; Chen L; Zhang P; Liu F; Song Y; Ju L; Li W J Nanosci Nanotechnol; 2021 Jan; 21(1):392-404. PubMed ID: 33213639 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Pore Structure and Its Relationship with Methane Adsorption on Medium-High Volatile Bituminous Coal: An Experimental Study Using Nuclear Magnetic Resonance. Zhang B; Fu X; Deng Z; Hao M J Nanosci Nanotechnol; 2021 Jan; 21(1):515-528. PubMed ID: 33213650 [TBL] [Abstract][Full Text] [Related]
20. Simulation study on dynamic characteristics of gas diffusion in coal under nitrogen injection. Fang X Sci Rep; 2022 Nov; 12(1):18865. PubMed ID: 36344689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]