These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37744927)

  • 21. Rapid carbon accumulation following managed realignment on the Bay of Fundy.
    Wollenberg JT; Ollerhead J; Chmura GL
    PLoS One; 2018; 13(3):e0193930. PubMed ID: 29561874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt Marsh Diking and Restoration: Biogeochemical Implications of Altered Wetland Hydrology.
    Portnoy JW
    Environ Manage; 1999 Jul; 24(1):111-120. PubMed ID: 10341067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments.
    Bulseco AN; Giblin AE; Tucker J; Murphy AE; Sanderman J; Hiller-Bittrolff K; Bowen JL
    Glob Chang Biol; 2019 Oct; 25(10):3224-3241. PubMed ID: 31317634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora.
    Rooney-Varga JN; Devereux R; Evans RS; Hines ME
    Appl Environ Microbiol; 1997 Oct; 63(10):3895-901. PubMed ID: 9327553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial Community Assembly in a Typical Estuarine Marsh with Multiple Environmental Gradients.
    Yao Z; Du S; Liang C; Zhao Y; Dini-Andreote F; Wang K; Zhang D
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial Succession in Salt Marsh Soils Along a Short-term Invasion Chronosequence of Spartina alterniflora in the Yellow River Estuary, China.
    Zhang G; Bai J; Zhao Q; Jia J; Wang W; Wang X
    Microb Ecol; 2020 Apr; 79(3):644-661. PubMed ID: 31444524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment.
    Reichart NJ; Jay ZJ; Krukenberg V; Parker AE; Spietz RL; Hatzenpichler R
    ISME J; 2020 Nov; 14(11):2851-2861. PubMed ID: 32887944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhizosphere microbial communities reflect genotypic and trait variation in a salt marsh ecosystem engineer.
    Lumibao CY; Bernik BM; Formel SK; Kandalepas D; Mighell KL; Pardue J; Van Bael SA; Blum MJ
    Am J Bot; 2020 Jun; 107(6):941-949. PubMed ID: 32533589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh.
    Charles H; Dukes JS
    Ecol Appl; 2009 Oct; 19(7):1758-73. PubMed ID: 19831068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.
    Bowen JL; Crump BC; Deegan LA; Hobbie JE
    ISME J; 2009 Aug; 3(8):924-34. PubMed ID: 19421233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh.
    Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D
    Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-term impact of sediment addition on plants and invertebrates in a southern California salt marsh.
    McAtee KJ; Thorne KM; Whitcraft CR
    PLoS One; 2020; 15(11):e0240597. PubMed ID: 33151998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon metabolic rates and GHG emissions in different wetland types of the Ebro Delta.
    Morant D; Picazo A; Rochera C; Santamans AC; Miralles-Lorenzo J; Camacho-Santamans A; Ibañez C; Martínez-Eixarch M; Camacho A
    PLoS One; 2020; 15(4):e0231713. PubMed ID: 32320412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments.
    Kearns PJ; Angell JH; Howard EM; Deegan LA; Stanley RH; Bowen JL
    Nat Commun; 2016 Sep; 7():12881. PubMed ID: 27666199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tracking de novo protein synthesis in the activated sludge microbiome using BONCAT-FACS.
    Du Z; Behrens SF
    Water Res; 2021 Oct; 205():117696. PubMed ID: 34601360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics.
    Xia S; Wang W; Song Z; Kuzyakov Y; Guo L; Van Zwieten L; Li Q; Hartley IP; Yang Y; Wang Y; Andrew Quine T; Liu C; Wang H
    Glob Chang Biol; 2021 Apr; 27(8):1627-1644. PubMed ID: 33432697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments.
    Benner R; Newell SY; Maccubbin AE; Hodson RE
    Appl Environ Microbiol; 1984 Jul; 48(1):36-40. PubMed ID: 16346598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sudden Vegetation Dieback in Atlantic and Gulf Coast Salt Marshes.
    Elmer WH; Useman S; Schneider RW; Marra RE; LaMondia JA; Mendelssohn IA; Jiménez-Gasco MM; Caruso FL
    Plant Dis; 2013 Apr; 97(4):436-445. PubMed ID: 30722244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Structure and diversity of
    Chen BB; Sun ZG; Hu XY; Wu HH; Wang XY; Li M; Li YZ
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(11):3007-3015. PubMed ID: 36384835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf.
    Vuillemin A; Coskun ÖK; Orsi WD
    Appl Environ Microbiol; 2022 May; 88(9):e0021622. PubMed ID: 35404072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.