BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37745452)

  • 1. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles.
    Hernández TDR; Gore SV; Kreiling JA; Creton R
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles.
    Del Rosario Hernández T; Gore SV; Kreiling JA; Creton R
    Biomed Pharmacother; 2024 Feb; 171():116096. PubMed ID: 38185043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel use of FDA-approved drugs identified by cluster analysis of behavioral profiles.
    Tucker Edmister S; Del Rosario Hernández T; Ibrahim R; Brown CA; Gore SV; Kakodkar R; Kreiling JA; Creton R
    Sci Rep; 2022 Apr; 12(1):6120. PubMed ID: 35449173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish Larvae Position Tracker (Z-LaP Tracker): a high-throughput deep-learning behavioral approach for the identification of calcineurin pathway-modulating drugs using zebrafish larvae.
    Gore SV; Kakodkar R; Del Rosario Hernández T; Edmister ST; Creton R
    Sci Rep; 2023 Feb; 13(1):3174. PubMed ID: 36823315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A zebrafish model for calcineurin-dependent brain function.
    Tucker Edmister S; Ibrahim R; Kakodkar R; Kreiling JA; Creton R
    Behav Brain Res; 2022 Jan; 416():113544. PubMed ID: 34425181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repurposed Drugs as Potential Therapeutic Candidates for the Management of Alzheimer's Disease.
    Shoaib M; Kamal MA; Rizvi SMD
    Curr Drug Metab; 2017; 18(9):842-852. PubMed ID: 28595531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of calcineurin signaling during development.
    Tucker Edmister S; Creton R
    Dev Neurobiol; 2022 Sep; 82(6):505-516. PubMed ID: 35785416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid neural network approaches to predict drug-target binding affinity for drug repurposing: screening for potential leads for Alzheimer's disease.
    Wu X; Li Z; Chen G; Yin Y; Chen CY
    Front Mol Biosci; 2023; 10():1227371. PubMed ID: 37441162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Drug Repurposing for Alzheimer's Disease Using Risk Genes From GWAS and Single-Cell RNA Sequencing Studies.
    Xu Y; Kong J; Hu P
    Front Pharmacol; 2021; 12():617537. PubMed ID: 34276354
    [No Abstract]   [Full Text] [Related]  

  • 10. The Brilliance of the Zebrafish Model: Perception on Behavior and Alzheimer's Disease.
    Shenoy A; Banerjee M; Upadhya A; Bagwe-Parab S; Kaur G
    Front Behav Neurosci; 2022; 16():861155. PubMed ID: 35769627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repurposing on Alzheimer's disease through modulation of NRF2 neighborhood.
    Bourdakou MM; Fernández-Ginés R; Cuadrado A; Spyrou GM
    Redox Biol; 2023 Nov; 67():102881. PubMed ID: 37696195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repurposing for Alzheimer's disease from 2012-2022-a 10-year literature review.
    Grabowska ME; Huang A; Wen Z; Li B; Wei WQ
    Front Pharmacol; 2023; 14():1257700. PubMed ID: 37745051
    [No Abstract]   [Full Text] [Related]  

  • 13. Reappraisal of FDA approved drugs against Alzheimer's disease based on differential gene expression and protein interaction network analysis: an in silico approach.
    G N S HS; Ganesan Rajalekshmi S; Murahari M; Burri RR
    J Biomol Struct Dyn; 2020 Aug; 38(13):3972-3989. PubMed ID: 31543038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses.
    Steele WB; Kristofco LA; Corrales J; Saari GN; Haddad SP; Gallagher EP; Kavanagh TJ; Kostal J; Zimmerman JB; Voutchkova-Kostal A; Anastas P; Brooks BW
    Sci Total Environ; 2018 Nov; 640-641():1587-1600. PubMed ID: 30021323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism.
    Dwivedi S; Medishetti R; Rani R; Sevilimedu A; Kulkarni P; Yogeeswari P
    J Pharmacol Toxicol Methods; 2019; 95():56-65. PubMed ID: 30500431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Proximity-based computational pipeline identifies drug candidates for different pathological stages of Alzheimer's disease.
    Wu Q; Su S; Cai C; Xu L; Fan X; Ke H; Dai Z; Fang S; Zhuo Y; Wang Q; Pan H; Gu Y; Fang J
    Comput Struct Biotechnol J; 2023; 21():1907-1920. PubMed ID: 36936813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-based stage-specific drug repurposing for Alzheimer's disease.
    Savva K; Zachariou M; Bourdakou MM; Dietis N; Spyrou GM
    Comput Struct Biotechnol J; 2022; 20():1427-1438. PubMed ID: 35386099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.
    Vargas DM; De Bastiani MA; Zimmer ER; Klamt F
    Alzheimers Res Ther; 2018 Jun; 10(1):59. PubMed ID: 29935546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish Larvae as a Behavioral Model in Neuropharmacology.
    Basnet RM; Zizioli D; Taweedet S; Finazzi D; Memo M
    Biomedicines; 2019 Mar; 7(1):. PubMed ID: 30917585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of embryonic cyclosporine exposures on brain development and behavior.
    Clift DE; Thorn RJ; Passarelli EA; Kapoor M; LoPiccolo MK; Richendrfer HA; Colwill RM; Creton R
    Behav Brain Res; 2015 Apr; 282():117-24. PubMed ID: 25591474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.