These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3774554)

  • 1. DNA repair in human xeroderma pigmentosum group C cells involves a different distribution of damaged sites in confluent and growing cells.
    Cleaver JE
    Nucleic Acids Res; 1986 Oct; 14(20):8155-65. PubMed ID: 3774554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative importance of incision and polymerase activities in determining the distribution of damaged sites that are mended in xeroderma pigmentosum group C cells.
    Cleaver JE
    Cancer Res; 1987 May; 47(9):2393-6. PubMed ID: 3105877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excision repair in xeroderma pigmentosum group C cells is regulated differently in transformed cells and primary fibroblasts.
    Cleaver JE
    Biochem Biophys Res Commun; 1988 Oct; 156(1):557-62. PubMed ID: 2845984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G.
    Zelle B; Lohman PH
    Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excision repair in xeroderma pigmentosum group C but not group D is clustered in a small fraction of the total genome.
    Karentz D; Cleaver JE
    Mutat Res; 1986 May; 165(3):165-74. PubMed ID: 3084965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A further definition of characteristics of DNA-excision repair in xeroderma pigmentosum complementation group A strains.
    Kantor GJ; Player AN
    Mutat Res; 1986 Jul; 166(1):79-88. PubMed ID: 3724780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum complementation group C.
    Kantor GJ; Barsalou LS; Hanawalt PC
    Mutat Res; 1990 May; 235(3):171-80. PubMed ID: 2342504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A re-examination of the intragenome distribution of repaired sites in proliferating xeroderma pigmentosum complementation group C fibroblasts.
    Kantor GJ; Shanower GA
    Mutat Res; 1992 Nov; 293(1):55-64. PubMed ID: 1383811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximity of repair patches to persistent pyrimidine dimers in DNA of normal human and xeroderma pigmentosum cells.
    Cleaver JE
    Radiat Res; 1988 Nov; 116(2):245-53. PubMed ID: 3186935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA repair and replication in xeroderma pigmentosum and related disorders.
    Cleaver JE
    Basic Life Sci; 1986; 39():425-38. PubMed ID: 3767846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts.
    Wood RD; Robins P; Lindahl T
    Cell; 1988 Apr; 53(1):97-106. PubMed ID: 3349527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetry of DNA replication and translesion synthesis of UV-induced thymine dimers.
    Cordeiro-Stone M; Nikolaishvili-Feinberg N
    Mutat Res; 2002 Dec; 510(1-2):91-106. PubMed ID: 12459446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients.
    Nishiwaki T; Kobayashi N; Iwamoto T; Yamamoto A; Sugiura S; Liu YC; Sarasin A; Okahashi Y; Hirano M; Ueno S; Mori T
    DNA Repair (Amst); 2008 Dec; 7(12):1990-8. PubMed ID: 18817897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts.
    Roza L; Vermeulen W; Bergen Henegouwen JB; Eker AP; Jaspers NG; Lohman PH; Hoeijmakers JH
    Cancer Res; 1990 Mar; 50(6):1905-10. PubMed ID: 2306742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excision repair characteristics of denV-transformed xeroderma pigmentosum cells.
    Ley RD; Applegate LA; de Riel JK; Henderson EE
    Mutat Res; 1989 Mar; 217(2):101-7. PubMed ID: 2918865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C.
    Mullenders LH; van Kesteren AC; Bussmann CJ; van Zeeland AA; Natarajan AT
    Mutat Res; 1984 Oct; 141(2):75-82. PubMed ID: 6493270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional visualization of ultraviolet-induced DNA damage and its repair in human cell nuclei.
    Nakagawa A; Kobayashi N; Muramatsu T; Yamashina Y; Shirai T; Hashimoto MW; Ikenaga M; Mori T
    J Invest Dermatol; 1998 Feb; 110(2):143-8. PubMed ID: 9457909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A xeroderma pigmentosum complementation group A related gene: confirmation using monoclonal antibodies against the cyclobutane dimer and (6-4) photoproduct.
    Mori T; Rinaldy TL; Athwal RS; Kaur GP; Nikaido O; Lloyd RS; Rinaldy A
    Mutat Res; 1993 Jan; 293(2):143-50. PubMed ID: 7678142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA.
    Venema J; van Hoffen A; Natarajan AT; van Zeeland AA; Mullenders LH
    Nucleic Acids Res; 1990 Feb; 18(3):443-8. PubMed ID: 2308842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of DNA excision repair in nondividing xeroderma pigmentosum cells, complementation group C.
    Kantor GJ
    Basic Life Sci; 1990; 53():203-14. PubMed ID: 2282035
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.