These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tran TM; Ameye M; Devlieghere F; De Saeger S; Eeckhout M; Audenaert K Front Plant Sci; 2021; 12():755733. PubMed ID: 34899781 [TBL] [Abstract][Full Text] [Related]
4. Rhamnolipid Biosurfactant against Borah SN; Goswami D; Sarma HK; Cameotra SS; Deka S Front Microbiol; 2016; 7():1505. PubMed ID: 27708638 [TBL] [Abstract][Full Text] [Related]
5. Biological interactions to select biocontrol agents against toxigenic strains of Aspergillus flavus and Fusarium verticillioides from maize. Etcheverry MG; Scandolara A; Nesci A; Vilas Boas Ribeiro MS; Pereira P; Battilani P Mycopathologia; 2009 May; 167(5):287-95. PubMed ID: 19247799 [TBL] [Abstract][Full Text] [Related]
6. Antifungal activities of a novel triazole fungicide, mefentrifluconazole, against the major maize pathogen Fusarium verticillioides. He D; Shi J; Qiu J; Hou Y; Du Y; Gao T; Huang W; Wu J; Lee YW; Mohamed SR; Liu X; Xu J Pestic Biochem Physiol; 2023 May; 192():105398. PubMed ID: 37105621 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis of maize pathogen Fusarium verticillioides revealed FvLcp1, a secreted protein with type-D fungal LysM and chitin-binding domains, that plays important roles in pathogenesis and mycotoxin production. Zhang H; Kim MS; Huang J; Yan H; Yang T; Song L; Yu W; Shim WB Microbiol Res; 2022 Dec; 265():127195. PubMed ID: 36126492 [TBL] [Abstract][Full Text] [Related]
8. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. Martínez-Álvarez JC; Castro-Martínez C; Sánchez-Peña P; Gutiérrez-Dorado R; Maldonado-Mendoza IE World J Microbiol Biotechnol; 2016 May; 32(5):75. PubMed ID: 27038945 [TBL] [Abstract][Full Text] [Related]
9. Current Perspectives of Biocontrol Agents for Management of N D; Achar PN; Sreenivasa MY J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575814 [No Abstract] [Full Text] [Related]
10. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. Cao A; Santiago R; Ramos AJ; Souto XC; Aguín O; Malvar RA; Butrón A Int J Food Microbiol; 2014 May; 177():63-71. PubMed ID: 24607861 [TBL] [Abstract][Full Text] [Related]
11. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Cavaglieri L; Orlando J; Rodríguez MI; Chulze S; Etcheverry M Res Microbiol; 2005; 156(5-6):748-54. PubMed ID: 15950130 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of fungal and bacterial antagonists for controlling growth, FUM1 gene expression and fumonisin B Samsudin NI; Rodriguez A; Medina A; Magan N Int J Food Microbiol; 2017 Apr; 246():72-79. PubMed ID: 28213318 [TBL] [Abstract][Full Text] [Related]
13. Microorganisms from corn stigma with biocontrol potential of Fusarium verticillioides. Diniz GFD; Figueiredo JEF; Lana UGP; Marins MS; Silva DD; Cota LV; Marriel IE; Oliveira-Paiva CA Braz J Biol; 2022; 82():e262567. PubMed ID: 36043660 [TBL] [Abstract][Full Text] [Related]
14. In Search of Resistance Against Fusarium Ear Rot: Ferulic Acid Contents in Maize Pericarp Are Associated With Antifungal Activity and Inhibition of Fumonisin Production. Martínez-Fraca J; de la Torre-Hernández ME; Meshoulam-Alamilla M; Plasencia J Front Plant Sci; 2022; 13():852257. PubMed ID: 35463425 [No Abstract] [Full Text] [Related]
15. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968 [TBL] [Abstract][Full Text] [Related]
16. Fumonisins: probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides. Arias SL; Theumer MG; Mary VS; Rubinstein HR J Agric Food Chem; 2012 Jun; 60(22):5667-75. PubMed ID: 22578291 [TBL] [Abstract][Full Text] [Related]
17. Antifungal activity of bacterial strains from maize silks against Fusarium verticillioides. de Fátima Dias Diniz G; Cota LV; Figueiredo JEF; Aguiar FM; da Silva DD; de Paula Lana UG; Dos Santos VL; Marriel IE; de Oliveira-Paiva CA Arch Microbiol; 2021 Dec; 204(1):89. PubMed ID: 34962587 [TBL] [Abstract][Full Text] [Related]
18. Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings. Arias SL; Mary VS; Otaiza SN; Wunderlin DA; Rubinstein HR; Theumer MG Phytochemistry; 2016 May; 125():54-64. PubMed ID: 26903312 [TBL] [Abstract][Full Text] [Related]
19. Fusarium verticillioides: Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize. Blacutt AA; Gold SE; Voss KA; Gao M; Glenn AE Phytopathology; 2018 Mar; 108(3):312-326. PubMed ID: 28971734 [TBL] [Abstract][Full Text] [Related]
20. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Galletti S; Paris R; Cianchetta S Microbiol Res; 2020 Mar; 233():126406. PubMed ID: 31883486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]