These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37746222)

  • 1. Impact of Pharmaceutical Compounds in the Bioremediation of Municipal Biosolids by the White-Rot-Fungi
    Saibi S; Haroune L; Savary O; Bellenger JP; Cabana H
    Front Fungal Biol; 2022; 3():896043. PubMed ID: 37746222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the efficiency of Trametes hirsuta for the removal of multiple pharmaceutical compounds under low concentrations relevant to the environment.
    Haroune L; Saibi S; Bellenger JP; Cabana H
    Bioresour Technol; 2014 Nov; 171():199-202. PubMed ID: 25194915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Enzymes Contribution to the Biocatalytic Removal of Pharmaceuticals by Trametes hirsuta.
    Haroune L; Saibi S; Cabana H; Bellenger JP
    Environ Sci Technol; 2017 Jan; 51(2):897-904. PubMed ID: 28045261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of biocatalytic and biostimulation approaches for the remediation of trace organic contaminants in municipal biosolids.
    Vaithyanathan VK; Savary O; Cabana H
    Waste Manag; 2021 Feb; 120():373-381. PubMed ID: 33341660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Various species of Basidiomycota fungi reveal different abilities to degrade pharmaceuticals and also different pathways of degradation.
    Kózka B; Sośnicka A; Nałęcz-Jawecki G; Drobniewska A; Turło J; Giebułtowicz J
    Chemosphere; 2023 Oct; 338():139481. PubMed ID: 37454990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Zn
    Wang C; Zhang X; Wu K; Liu S; Li X; Zhu C; Xiao Y; Fang Z; Liu J
    Appl Environ Microbiol; 2024 Jun; ():e0054524. PubMed ID: 38899887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of
    Shabaev AV; Moiseenko KV; Glazunova OA; Savinova OS; Fedorova TV
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of the synthetic musk compounds Galaxolide and Tonalide by white rot fungal strain-assisted phytoremediation in biosolid-amended soil.
    Chane AD; Košnář Z; Hřebečková T; Wiesnerová L; Jozífek M; Doležal P; Praus L; Tlustoš P
    Chemosphere; 2023 Jul; 328():138605. PubMed ID: 37028715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes.
    Naghdi M; Taheran M; Brar SK; Kermanshahi-Pour A; Verma M; Surampalli RY
    Environ Pollut; 2018 Mar; 234():190-213. PubMed ID: 29175684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exoproteomic Study and Transcriptional Responses of Laccase and Ligninolytic Peroxidase Genes of White-Rot Fungus
    Moiseenko KV; Glazunova OA; Savinova OS; Fedorova TV
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of Trametes hirsuta to hexavalent chromium promotes laccase-mediated decolorization of reactive black 5.
    Liu J; Liu F; Ding C; Ma F; Yu H; Shi Y; Zhang X
    Ecotoxicol Environ Saf; 2020 Dec; 205():111134. PubMed ID: 32829208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi using potato solid wastes as the sole nutrient source.
    Schalchli H; Hormazábal E; Rubilar O; Briceño G; Mutis A; Zocolo GJ; Diez MC
    J Appl Microbiol; 2017 Oct; 123(4):886-895. PubMed ID: 28718996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing laccase production by white-rot fungus
    Zhang J; Ke W; Chen H
    Prep Biochem Biotechnol; 2020; 50(1):10-17. PubMed ID: 31430215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremoval of humic acid from water by white rot fungi: exploring the removal mechanisms.
    Zahmatkesh M; Spanjers H; Toran MJ; Blánquez P; van Lier JB
    AMB Express; 2016 Dec; 6(1):118. PubMed ID: 27878568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate.
    Vasina DV; Pavlov AR; Koroleva OV
    BMC Microbiol; 2016 Jun; 16(1):106. PubMed ID: 27296712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting microplastics in organic-rich materials and their potential risks to earthworms in agroecosystems.
    Rezaei Rashti M; Hintz J; Esfandbod M; Bahadori M; Lan Z; Chen C
    Waste Manag; 2023 Jul; 166():96-103. PubMed ID: 37167710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of phenols-like substances in pharmaceutical wastewater with fungal bioreactors by adding Trametes versicolor.
    Bernats M; Juhna T
    Water Sci Technol; 2018 Sep; 78(3-4):743-750. PubMed ID: 30252652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta.
    Aydin S
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6491-6499. PubMed ID: 27033714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon storage in a heavy clay soil landfill site after biosolid application.
    Bolan NS; Kunhikrishnan A; Naidu R
    Sci Total Environ; 2013 Nov; 465():216-25. PubMed ID: 23380138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced bio-oxidation of fungal mixed cultures immobilized on rotating biological contactors for the removal of pharmaceutical micropollutants in a real hospital wastewater.
    Del Álamo AC; Pariente MI; Molina R; Martínez F
    J Hazard Mater; 2022 Mar; 425():128002. PubMed ID: 34896717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.