These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37746328)
1. Artificial intelligence, explainability, and the scientific method: A proof-of-concept study on novel retinal biomarker discovery. Delavari P; Ozturan G; Yuan L; Yilmaz Ö; Oruc I PNAS Nexus; 2023 Sep; 2(9):pgad290. PubMed ID: 37746328 [TBL] [Abstract][Full Text] [Related]
2. Using generative AI to investigate medical imagery models and datasets. Lang O; Yaya-Stupp D; Traynis I; Cole-Lewis H; Bennett CR; Lyles CR; Lau C; Irani M; Semturs C; Webster DR; Corrado GS; Hassidim A; Matias Y; Liu Y; Hammel N; Babenko B EBioMedicine; 2024 Apr; 102():105075. PubMed ID: 38565004 [TBL] [Abstract][Full Text] [Related]
3. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images. Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702 [TBL] [Abstract][Full Text] [Related]
4. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
5. Learning from small data: Classifying sex from retinal images via deep learning. Berk A; Ozturan G; Delavari P; Maberley D; Yılmaz Ö; Oruc I PLoS One; 2023; 18(8):e0289211. PubMed ID: 37535591 [TBL] [Abstract][Full Text] [Related]
6. Development and integration of VGG and dense transfer-learning systems supported with diverse lung images for discovery of the Coronavirus identity. Abdulsalam Hamwi W; Almustafa MM Inform Med Unlocked; 2022; 32():101004. PubMed ID: 35822170 [TBL] [Abstract][Full Text] [Related]
7. Development and evaluation of a live birth prediction model for evaluating human blastocysts from a retrospective study. Liu H; Zhang Z; Gu Y; Dai C; Shan G; Song H; Li D; Chen W; Lin G; Sun Y Elife; 2023 Feb; 12():. PubMed ID: 36810139 [TBL] [Abstract][Full Text] [Related]
8. Utilizing human intelligence in artificial intelligence for detecting glaucomatous fundus images using human-in-the-loop machine learning. Ramesh PV; Subramaniam T; Ray P; Devadas AK; Ramesh SV; Ansar SM; Ramesh MK; Rajasekaran R; Parthasarathi S Indian J Ophthalmol; 2022 Apr; 70(4):1131-1138. PubMed ID: 35325999 [TBL] [Abstract][Full Text] [Related]
9. Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants. Zheng Y; Huang J; Chen T; Ou Y; Zhou W Front Comput Neurosci; 2021; 15():637144. PubMed ID: 33679359 [TBL] [Abstract][Full Text] [Related]
10. [A new approach for studying the retinal and choroidal circulation]. Yoneya S Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089 [TBL] [Abstract][Full Text] [Related]
11. Human-recognizable CT image features of subsolid lung nodules associated with diagnosis and classification by convolutional neural networks. Jiang B; Zhang Y; Zhang L; H de Bock G; Vliegenthart R; Xie X Eur Radiol; 2021 Oct; 31(10):7303-7315. PubMed ID: 33847813 [TBL] [Abstract][Full Text] [Related]
12. Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases. Kim KM; Heo TY; Kim A; Kim J; Han KJ; Yun J; Min JK J Pers Med; 2021 Apr; 11(5):. PubMed ID: 33918998 [TBL] [Abstract][Full Text] [Related]
13. Ophthalmologist-Level Classification of Fundus Disease With Deep Neural Networks. Jiang P; Dou Q; Shi L Transl Vis Sci Technol; 2020 Jul; 9(2):39. PubMed ID: 32855843 [TBL] [Abstract][Full Text] [Related]
15. Artificial intelligence (AI) diagnostic tools: utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically-a retrospective study. Alotaibi G; Awawdeh M; Farook FF; Aljohani M; Aldhafiri RM; Aldhoayan M BMC Oral Health; 2022 Sep; 22(1):399. PubMed ID: 36100856 [TBL] [Abstract][Full Text] [Related]
16. Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in Optical Coherence Tomography Images. Thakoor KA; Koorathota SC; Hood DC; Sajda P IEEE Trans Biomed Eng; 2021 Aug; 68(8):2456-2466. PubMed ID: 33290209 [TBL] [Abstract][Full Text] [Related]
17. Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images. Stevenson CH; Hong SC; Ogbuehi KC Clin Exp Ophthalmol; 2019 May; 47(4):484-489. PubMed ID: 30370587 [TBL] [Abstract][Full Text] [Related]
18. Detection of COVID-19 in X-ray Images Using Densely Connected Squeeze Convolutional Neural Network (DCSCNN): Focusing on Interpretability and Explainability of the Black Box Model. Ali S; Hussain A; Bhattacharjee S; Athar A; Abdullah ; Kim HC Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560352 [TBL] [Abstract][Full Text] [Related]
19. GabROP: Gabor Wavelets-Based CAD for Retinopathy of Prematurity Diagnosis via Convolutional Neural Networks. Attallah O Diagnostics (Basel); 2023 Jan; 13(2):. PubMed ID: 36672981 [TBL] [Abstract][Full Text] [Related]
20. Clinical Wide-Field Retinal Image Deep Learning Classification of Exudative and Non-Exudative Age-Related Macular Degeneration. Tak N; Reddy AJ; Martel J; Martel JB Cureus; 2021 Aug; 13(8):e17579. PubMed ID: 34646633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]