These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37746667)

  • 1. Application of artificial intelligence in 3D printing physical organ models.
    Ma L; Yu S; Xu X; Moses Amadi S; Zhang J; Wang Z
    Mater Today Bio; 2023 Dec; 23():100792. PubMed ID: 37746667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Physical Organ Models: Recent Developments and Challenges.
    Jin Z; Li Y; Yu K; Liu L; Fu J; Yao X; Zhang A; He Y
    Adv Sci (Weinh); 2021 Sep; 8(17):e2101394. PubMed ID: 34240580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches.
    Pugliese R; Regondi S
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence Assisted Fabrication of 3D, 4D and 5D Printed Formulations or Devices for Drug Delivery.
    Sharma KS
    Curr Drug Deliv; 2023; 20(6):752-769. PubMed ID: 36503474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized development of human organs using 3D printing technology.
    Radenkovic D; Solouk A; Seifalian A
    Med Hypotheses; 2016 Feb; 87():30-3. PubMed ID: 26826637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical methods for design and testing of 3D-printed polymers.
    Espino MT; Tuazon BJ; Espera AH; Nocheseda CJC; Manalang RS; Dizon JRC; Advincula RC
    MRS Commun; 2023; 13(2):193-211. PubMed ID: 37153534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Printed Anatomic Models Derived From Magnetic Resonance Imaging Data: Current State and Image Acquisition Recommendations for Appropriate Clinical Scenarios.
    Talanki VR; Peng Q; Shamir SB; Baete SH; Duong TQ; Wake N
    J Magn Reson Imaging; 2022 Apr; 55(4):1060-1081. PubMed ID: 34046959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications.
    Rojek I; Mikołajewski D; Dostatni E; Macko M
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features.
    Rezapour Sarabi M; Alseed MM; Karagoz AA; Tasoglu S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How useful is 3D printing in maxillofacial surgery?
    Louvrier A; Marty P; Barrabé A; Euvrard E; Chatelain B; Weber E; Meyer C
    J Stomatol Oral Maxillofac Surg; 2017 Sep; 118(4):206-212. PubMed ID: 28732777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.
    Shui W; Zhou M; Chen S; Pan Z; Deng Q; Yao Y; Pan H; He T; Wang X
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):13-23. PubMed ID: 27480284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning.
    Huff TJ; Ludwig PE; Zuniga JM
    Expert Rev Med Devices; 2018 May; 15(5):349-356. PubMed ID: 29723481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printed Organ Models for Surgical Applications.
    Qiu K; Haghiashtiani G; McAlpine MC
    Annu Rev Anal Chem (Palo Alto Calif); 2018 Jun; 11(1):287-306. PubMed ID: 29589961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of 3D-Printing of Microneedles.
    Olowe M; Parupelli SK; Desai S
    Pharmaceutics; 2022 Dec; 14(12):. PubMed ID: 36559187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development.
    Rojek I; Mikołajewski D; Macko M; Szczepański Z; Dostatni E
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34067326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing for preoperative planning and surgical training: a review.
    Ganguli A; Pagan-Diaz GJ; Grant L; Cvetkovic C; Bramlet M; Vozenilek J; Kesavadas T; Bashir R
    Biomed Microdevices; 2018 Aug; 20(3):65. PubMed ID: 30078059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Neural Network Algorithms for 3D Printing.
    Mahmood MA; Visan AI; Ristoscu C; Mihailescu IN
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in the Applications of Additive Manufacturing (3D Printing) in Drug Delivery: A Comprehensive Review.
    Muhindo D; Elkanayati R; Srinivasan P; Repka MA; Ashour EA
    AAPS PharmSciTech; 2023 Feb; 24(2):57. PubMed ID: 36759435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracranial vasculature 3D printing: review of techniques and manufacturing processes to inform clinical practice.
    Cogswell PM; Rischall MA; Alexander AE; Dickens HJ; Lanzino G; Morris JM
    3D Print Med; 2020 Aug; 6(1):18. PubMed ID: 32761490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.