These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37747446)

  • 41. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure.
    Tetteh E; Hallbeck MS; Mirka GA
    Appl Ergon; 2022 Apr; 100():103646. PubMed ID: 34847371
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting.
    Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J
    Work; 2024; 77(4):1179-1188. PubMed ID: 37980590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review.
    Kermavnar T; de Vries AW; de Looze MP; O'Sullivan LW
    Ergonomics; 2021 Jun; 64(6):685-711. PubMed ID: 33369518
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of passive shoulder exoskeleton support during working with arms over shoulder level.
    Brunner A; van Sluijs R; Luder T; Camichel C; Kos M; Bee D; Bartenbach V; Lambercy O
    Wearable Technol; 2023; 4():e26. PubMed ID: 38510589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An ergonomic assessment tool for evaluating the effect of back exoskeletons on injury risk.
    Zelik KE; Nurse CA; Schall MC; Sesek RF; Marino MC; Gallagher S
    Appl Ergon; 2022 Feb; 99():103619. PubMed ID: 34740072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Social Processes: What Determines Industrial Workers' Intention to Use Exoskeletons?
    Elprama SA; Vannieuwenhuyze JTA; De Bock S; Vanderborght B; De Pauw K; Meeusen R; Jacobs A
    Hum Factors; 2020 May; 62(3):337-350. PubMed ID: 31971838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomechanical changes, acceptance, and usability of a passive shoulder exoskeleton in manual material handling. A field study.
    Schrøder Jakobsen L; de Zee M; Samani A; Desbrosses K; Madeleine P
    Appl Ergon; 2023 Nov; 113():104104. PubMed ID: 37531933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach.
    Ehrlich-Jones L; Crown DS; Kinnett-Hopkins D; Field-Fote E; Furbish C; Mummidisetty CK; Bond RA; Forrest G; Jayaraman A; Heinemann AW
    Arch Phys Med Rehabil; 2021 Feb; 102(2):203-215. PubMed ID: 33171130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Association, expectations and barriers of the use of exoskeletons in small and medium-sized enterprises].
    Hoffmann H; Pitz I; Adomssent B; Russmann C
    Zentralbl Arbeitsmed Arbeitsschutz Ergon; 2022; 72(2):68-77. PubMed ID: 35068706
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks.
    Kong YK; Kim JH; Shim HH; Shim JW; Park SS; Choi KH
    Appl Ergon; 2023 May; 109():103965. PubMed ID: 36645995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces.
    Crea S; Beckerle P; De Looze M; De Pauw K; Grazi L; Kermavnar T; Masood J; O'Sullivan LW; Pacifico I; Rodriguez-Guerrero C; Vitiello N; Ristić-Durrant D; Veneman J
    Wearable Technol; 2021; 2():e11. PubMed ID: 38486625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Barriers and facilitators to exoskeleton use in persons with spinal cord injury: a systematic review.
    Pinelli E; Zinno R; Barone G; Bragonzoni L
    Disabil Rehabil Assist Technol; 2024 Aug; 19(6):2355-2363. PubMed ID: 38009458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design recommendations for exoskeletons: Perspectives of individuals with spinal cord injury.
    van Silfhout L; Hosman AJF; van de Meent H; Bartels RHMA; Edwards MJR
    J Spinal Cord Med; 2023 Mar; 46(2):256-261. PubMed ID: 34062111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A method to quantify the reduction of back and hip muscle fatigue of lift-support exoskeletons.
    van Sluijs RM; Rodriguez-Cianca D; Sanz-Morère CB; Massardi S; Bartenbach V; Torricelli D
    Wearable Technol; 2023; 4():e2. PubMed ID: 38487768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exoskeleton use in post-stroke gait rehabilitation: a qualitative study of the perspectives of persons post-stroke and physiotherapists.
    Vaughan-Graham J; Brooks D; Rose L; Nejat G; Pons J; Patterson K
    J Neuroeng Rehabil; 2020 Sep; 17(1):123. PubMed ID: 32912215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant.
    Iranzo S; Piedrabuena A; Iordanov D; Martinez-Iranzo U; Belda-Lois JM
    Appl Ergon; 2020 Sep; 87():103120. PubMed ID: 32310110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The use of exoskeletons in the occupational context for primary, secondary, and tertiary prevention of work-related musculoskeletal complaints.
    Steinhilber B; Luger T; Schwenkreis P; Middeldorf S; Bork H; Mann B; von Glinski A; Schildhauer TA; Weiler S; Schmauder M; Heinrich K; Winter G; Schnalke G; Frener P; Schick R; Wischniewski S; Jäger M
    IISE Trans Occup Ergon Hum Factors; 2020; 8(3):132-144. PubMed ID: 33140996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers.
    Di Natali C; Poliero T; Fanti V; Sposito M; Caldwell DG
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exoskeleton technology in nursing practice: assessing effectiveness, usability, and impact on nurses' quality of work life, a narrative review.
    Vallée A
    BMC Nurs; 2024 Mar; 23(1):156. PubMed ID: 38443892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.