These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 37747644)

  • 1. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized deep neural network models for blood pressure classification using Fourier analysis-based time-frequency spectrogram of photoplethysmography signal.
    Pankaj ; Kumar A; Kumar M; Komaragiri R
    Biomed Eng Lett; 2023 Nov; 13(4):739-750. PubMed ID: 37872982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals.
    Rastegar S; Gholam Hosseini H; Lowe A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography.
    Liang H; He W; Xu Z
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508
    [No Abstract]   [Full Text] [Related]  

  • 7. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 8. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.
    Raju SMTU; Dipto SA; Hossain MI; Chowdhury MAS; Haque F; Nashrah AT; Nishan A; Khan MMH; Hashem MMA
    Med Biol Eng Comput; 2024 Dec; 62(12):3687-3708. PubMed ID: 38963467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel CNN-LSTM Model Based Non-Invasive Cuff-Less Blood Pressure Estimation System.
    Nandi P; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():832-836. PubMed ID: 36086017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning.
    Wang W; Mohseni P; Kilgore KL; Najafizadeh L
    IEEE J Biomed Health Inform; 2022 May; 26(5):2075-2085. PubMed ID: 34784289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust PPG motion artifact detection using a 1-D convolution neural network.
    Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E
    Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification.
    Liang Y; Chen Z; Ward R; Elgendi M
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30373211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.