These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37747698)
1. Construction of prophage-free and highly-transformable Limosilactobacillus reuteri strains and their use for production of 1,3-propanediol. Singh K; Park S Biotechnol Bioeng; 2024 Jan; 121(1):317-328. PubMed ID: 37747698 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol. Singh K; Ainala SK; Park S Bioresour Technol; 2021 Oct; 338():125590. PubMed ID: 34298333 [TBL] [Abstract][Full Text] [Related]
3. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism. Chen L; Bromberger PD; Nieuwenhuiys G; Hatti-Kaul R PLoS One; 2016; 11(12):e0168107. PubMed ID: 28030590 [TBL] [Abstract][Full Text] [Related]
4. Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016. Ricci MA; Russo A; Pisano I; Palmieri L; de Angelis M; Agrimi G J Microbiol Biotechnol; 2015 Jun; 25(6):893-902. PubMed ID: 25588555 [TBL] [Abstract][Full Text] [Related]
5. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Stevens MJ; Vollenweider S; Meile L; Lacroix C Microb Cell Fact; 2011 Aug; 10():61. PubMed ID: 21812997 [TBL] [Abstract][Full Text] [Related]
6. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol. Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA Food Res Int; 2018 Nov; 113():424-432. PubMed ID: 30195537 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53. Ju JH; Wang D; Heo SY; Kim MS; Seo JW; Kim YM; Kim DH; Kang SA; Kim CH; Oh BR Microb Cell Fact; 2020 Jan; 19(1):6. PubMed ID: 31931797 [TBL] [Abstract][Full Text] [Related]
8. Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem. Oh JH; Lin XB; Zhang S; Tollenaar SL; Özçam M; Dunphy C; Walter J; van Pijkeren JP Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31676478 [TBL] [Abstract][Full Text] [Related]
9. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Dishisha T; Pereyra LP; Pyo SH; Britton RA; Hatti-Kaul R Microb Cell Fact; 2014 May; 13():76. PubMed ID: 24886501 [TBL] [Abstract][Full Text] [Related]
10. Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83. Ju JH; Heo SY; Choi SW; Kim YM; Kim MS; Kim CH; Oh BR Bioresour Technol; 2021 Oct; 337():125361. PubMed ID: 34320778 [TBL] [Abstract][Full Text] [Related]
11. Exploring Lactobacillus reuteri DSM20016 as a biocatalyst for transformation of longer chain 1,2-diols: Limits with microcompartment. Chen L; Hatti-Kaul R PLoS One; 2017; 12(9):e0185734. PubMed ID: 28957423 [TBL] [Abstract][Full Text] [Related]
12. An integrated process for the production of 1,3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri. Suppuram P; Ramakrishnan GG; Subramanian R Biosci Biotechnol Biochem; 2019 Apr; 83(4):755-762. PubMed ID: 30582401 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. Jolly J; Hitzmann B; Ramalingam S; Ramachandran KB J Biosci Bioeng; 2014 Aug; 118(2):188-94. PubMed ID: 24525111 [TBL] [Abstract][Full Text] [Related]
14. Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid. Burgé G; Saulou-Bérion C; Moussa M; Pollet B; Flourat A; Allais F; Athès V; Spinnler HE Appl Biochem Biotechnol; 2015 Oct; 177(4):923-39. PubMed ID: 26319567 [TBL] [Abstract][Full Text] [Related]
15. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes. Sabet-Azad R; Sardari RR; Linares-Pastén JA; Hatti-Kaul R Bioresour Technol; 2015 Mar; 180():214-21. PubMed ID: 25614245 [TBL] [Abstract][Full Text] [Related]
17. Suppression of lactate production of Lactobacillus reuteri JCM1112 by co-feeding glycerol with glucose. Ichinose R; Fukuda Y; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2020 Jan; 129(1):110-115. PubMed ID: 31519396 [TBL] [Abstract][Full Text] [Related]
18. Development of recombinant Klebsiella pneumoniae ∆dhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Ashok S; Raj SM; Rathnasingh C; Park S Appl Microbiol Biotechnol; 2011 May; 90(4):1253-65. PubMed ID: 21336929 [TBL] [Abstract][Full Text] [Related]