These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37748073)
1. Optimizing oxygen vacancies through grain boundary engineering to enhance electrocatalytic nitrogen reduction. Zhong X; Yuan E; Yang F; Liu Y; Lu H; Yang J; Gao F; Zhou Y; Pan J; Zhu J; Yu C; Zhu C; Yuan A; Ang EH Proc Natl Acad Sci U S A; 2023 Oct; 120(40):e2306673120. PubMed ID: 37748073 [TBL] [Abstract][Full Text] [Related]
2. Oxygen vacancy modulation in interfacial engineering Fe Liu Y; Huixiang Ang E; Zhong X; Lu H; Yang J; Gao F; Yu C; Zhu J; Zhu C; Zhou Y; Yang F; Yuan E; Yuan A J Colloid Interface Sci; 2023 Dec; 652(Pt A):418-428. PubMed ID: 37604053 [TBL] [Abstract][Full Text] [Related]
3. Coral-like Fe-doped MoO He Z; Cui X; Lei G; Liu Z; Yang X; Liu Y; Wan J; Ma F Dalton Trans; 2023 Feb; 52(9):2887-2897. PubMed ID: 36779249 [TBL] [Abstract][Full Text] [Related]
4. Electrochemically synthesized SnO He X; Guo H; Liao T; Pu Y; Lai L; Wang Z; Tang H Nanoscale; 2021 Oct; 13(38):16307-16315. PubMed ID: 34559870 [TBL] [Abstract][Full Text] [Related]
5. Mo Wan Y; Wang Z; Li J; Lv R ACS Nano; 2022 Jan; 16(1):643-654. PubMed ID: 34964347 [TBL] [Abstract][Full Text] [Related]
6. A phosphorus-doped potassium peroxyniobate electrocatalyst with enriched oxygen vacancies boosts electrocatalytic nitrogen reduction to ammonia. Fan S; Zhao F; Wang X; Wang Q; Zhao Q; Li J; Liu G Dalton Trans; 2022 Jul; 51(29):11163-11168. PubMed ID: 35801527 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Nitrogen Reduction to Ammonia by Surface- and Defect-Engineered Co-catalyst-Modified Perovskite Catalysts under Ambient Conditions and Their Charge Carrier Dynamics. Bastia S; Moses YT; Kumar N; Mishra RP; Chaudhary YS ACS Appl Mater Interfaces; 2023 Mar; 15(10):13052-13063. PubMed ID: 36853145 [TBL] [Abstract][Full Text] [Related]
8. Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO Yang P; Guo H; Wu H; Zhang F; Liu J; Li M; Yang Y; Cao Y; Yang G; Zhou Y J Colloid Interface Sci; 2023 Apr; 636():184-193. PubMed ID: 36634390 [TBL] [Abstract][Full Text] [Related]
9. Oxygen Vacancy Engineering of Fe-Doped NiMoO Liu N; Wu R; Liu Y; Liu Y; Deng P; Li Y; Du Y; Cheng Y; Zhuang Z; Kang Z; Li H Inorg Chem; 2023 Jul; 62(30):11990-12000. PubMed ID: 37462358 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen-vacancy-rich molybdenum nitride nanosheets as highly efficient electrocatalysts for nitrogen reduction reaction. Younis MA; Manzoor S; Ali A; Guo L; Yousaf MI; Nosheen S; Naveed A; Ahmad N Dalton Trans; 2024 Jan; 53(4):1809-1816. PubMed ID: 38173319 [TBL] [Abstract][Full Text] [Related]
11. Durable Electrocatalytic Reduction of Nitrate to Ammonia over Defective Pseudobrookite Fe Du H; Guo H; Wang K; Du X; Beshiwork BA; Sun S; Luo Y; Liu Q; Li T; Sun X Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202215782. PubMed ID: 36468550 [TBL] [Abstract][Full Text] [Related]
12. Enhancing electrocatalytic nitrogen fixation over core-shell P-Sb Li X; Wang X; Guo A; Luo W; Yang L; Yang W J Colloid Interface Sci; 2025 Jan; 678(Pt A):1143-1152. PubMed ID: 39265328 [TBL] [Abstract][Full Text] [Related]
13. Anionic Biopolymer Assisted Preparation of MoO Du Y; He Z; Ma F; Jiang Y; Wan J; Wu G; Liu Y Inorg Chem; 2021 Mar; 60(6):4116-4123. PubMed ID: 33663213 [TBL] [Abstract][Full Text] [Related]
14. High temperature induced S vacancies in natural molybdenite for robust electrocatalytic nitrogen reduction. You M; Yi S; Hou X; Wang Z; Ji H; Zhang L; Wang Y; Zhang Z; Chen D J Colloid Interface Sci; 2021 Oct; 599():849-856. PubMed ID: 33991801 [TBL] [Abstract][Full Text] [Related]
15. Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction. Li H; Xu X; Lin X; Chen J; Zhu K; Peng F; Gao F Nanoscale; 2023 Feb; 15(8):4071-4079. PubMed ID: 36734374 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen-Defective Polymeric Carbon Nitride Nanolayer Enabled Efficient Electrocatalytic Nitrogen Reduction with High Faradaic Efficiency. Peng G; Wu J; Wang M; Niklas J; Zhou H; Liu C Nano Lett; 2020 Apr; 20(4):2879-2885. PubMed ID: 32212665 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical nitrogen fixation via bimetallic Sn-Ti sites on defective titanium oxide catalysts. Cao N; Wei Z; Xu J; Luo J; Guan A; Al-Enizi AM; Ma J; Zheng G J Colloid Interface Sci; 2021 Apr; 588():242-247. PubMed ID: 33388584 [TBL] [Abstract][Full Text] [Related]
18. Co-Doped Fe Chen X; Yin H; Yang X; Zhang W; Xiao D; Lu Z; Zhang Y; Zhang P Inorg Chem; 2022 Dec; 61(49):20123-20132. PubMed ID: 36441161 [TBL] [Abstract][Full Text] [Related]
19. In situ interface engineered Co/NC derived from ZIF-67 as an efficient electrocatalyst for nitrate reduction to ammonia. Liu H; Qin J; Mu J; Liu B J Colloid Interface Sci; 2023 Apr; 636():134-140. PubMed ID: 36623366 [TBL] [Abstract][Full Text] [Related]
20. Increased Oxygen Vacancies in CeO Li J; Wang Y; Lu X; Guo K; Xu C Inorg Chem; 2022 Oct; 61(43):17242-17247. PubMed ID: 36268836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]