These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3774873)

  • 1. Absorbed power distributions from single or multiple waveguide applicators during microwave hyperthermia.
    Antolini R; Cerri G; Cristoforetti L; De Leo R
    Phys Med Biol; 1986 Sep; 31(9):1005-19. PubMed ID: 3774873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorbed power distributions from two tilted waveguide applicators.
    Nilsson P; Larsson T; Persson B
    Int J Hyperthermia; 1985; 1(1):29-43. PubMed ID: 3837079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption rate density (ARD) computation in microwave hyperthermia by the finite-difference time-domain method.
    Pontalti R; Cristoforetti L; Valdagni R; Antolini R
    Phys Med Biol; 1990 Jul; 35(7):891-904. PubMed ID: 2385621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators.
    Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A variable microwave array attenuator for use with single-element waveguide applicators.
    Sherar MD; Clark H; Cooper B; Kumaradas J; Liu FF
    Int J Hyperthermia; 1994; 10(5):723-31. PubMed ID: 7806927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific absorption rates in simulated tissue media for a 10 x 10 cm 915-MHz waveguide applicator.
    Denman DL; Kolasa MJ; Elson HR; Aron BS; Kereiakes JG
    Med Phys; 1987; 14(4):681-6. PubMed ID: 3627011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beam shaping for microwave waveguide hyperthermia applicators.
    Sherar MD; Liu FF; Newcombe DJ; Cooper B; Levin W; Taylor WB; Hunt JW
    Int J Radiat Oncol Biol Phys; 1993 Apr; 25(5):849-57. PubMed ID: 8478236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave applicator for hyperthermia treatment on in vivo melanoma model.
    Togni P; Vrba J; Vannucci L
    Med Biol Eng Comput; 2010 Mar; 48(3):285-92. PubMed ID: 20033789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 433 MHz Lucite cone waveguide applicator for superficial hyperthermia.
    van Rhoon GC; Rietveld PJ; van der Zee J
    Int J Hyperthermia; 1998; 14(1):13-27. PubMed ID: 9483443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field distributions of waveguide arrays for local tumor hyperthermia.
    Becerra C; Rebollar J
    J Microw Power Electromagn Energy; 1988; 23(4):247-54. PubMed ID: 3244069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of microwave hyperthermia applicators.
    Chou CK
    Bioelectromagnetics; 1992; 13(6):581-97. PubMed ID: 1482420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metamaterial lens applicator for microwave hyperthermia of breast cancer.
    Wang G; Gong Y
    Int J Hyperthermia; 2009; 25(6):434-45. PubMed ID: 19925323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power.
    Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG
    Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FDTD simulations of Clini-Therm applicators on inhomogeneous planar tissue models.
    Chan KW; McDougall JA; Chou CK
    Int J Hyperthermia; 1995; 11(6):809-20. PubMed ID: 8586902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.