These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3774873)

  • 21. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Miniature dipole E-field probes for characterizing both phase and amplitude of microwave radiators for hyperthermia.
    Gopal MK; Cetas TC; Rosman D
    Int J Hyperthermia; 1995; 11(6):769-83. PubMed ID: 8586899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved applicator-patient coupling in microwave-induced hyperthermia.
    Nussbaum GH; Goodman RA; Bruce AA
    Med Phys; 1983; 10(6):897-8. PubMed ID: 6656702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical system for simultaneous external superficial microwave hyperthermia and cobalt-60 radiation.
    Moros EG; Straube WL; Klein EE; Maurath J; Myerson RJ
    Int J Hyperthermia; 1995; 11(1):11-26. PubMed ID: 7714365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium temperature distributions in uniform phantoms for superficial microwave applicators: implications for temperature-based standards of applicator adequacy.
    Myerson RJ; Emami BN; Perez CA; Straube W; Leybovich L; Von Gerichten D
    Int J Hyperthermia; 1992; 8(1):11-21. PubMed ID: 1545156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Design of broadband power divider in microwave hyperthermia system].
    Sun B; Jiang G; Lu X; Cao Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):974-7. PubMed ID: 21089651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation.
    Rossetto F; Diederich CJ; Stauffer PR
    Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noninvasive control of microwave hyperthermia by retro-focusing.
    Sawyer MD; Edrich J
    Biomed Sci Instrum; 1990; 26():127-35. PubMed ID: 2334756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators.
    Neuman DG; Stauffer PR; Jacobsen S; Rossetto F
    Int J Hyperthermia; 2002; 18(3):180-93. PubMed ID: 12028636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An adaptive microwave phased array for targeted heating of deep tumours in intact breast: animal study results.
    Fenn AJ; Wolf GL; Fogle RM
    Int J Hyperthermia; 1999; 15(1):45-61. PubMed ID: 10193756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance evaluation of annular arrays in practice: the measurement of phase and amplitude patterns of radio-frequency deep body applicators.
    Schneider CJ; Kuijer JP; Colussi LC; Schepp CJ; Van Dijk JD
    Med Phys; 1995 Jun; 22(6):755-65. PubMed ID: 7565364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of a current sheet applicator array for superficial hyperthermia: incoherent versus coherent operation.
    Prior MV; Lumori ML; Hand JW; Lamaitre G; Schneider CJ; van Dijk JD
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):694-8. PubMed ID: 7622152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical evaluation of submillimeter diameter microwave interstitial hyperthermia applicators.
    Gottlieb C; Moffat F; Hagmann M; Babij T; Abitbol A; Lewin A; Houdek P; Schwade J
    J Microw Power Electromagn Energy; 1990; 25(3):149-60. PubMed ID: 2266468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An improved bolus configuration for commercial multielement ultrasound and microwave hyperthermia systems.
    Diederich CJ; Stauffer PR; Bozzo D
    Med Phys; 1994 Sep; 21(9):1401-3. PubMed ID: 7838050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators.
    Paulides MM; Mestrom RM; Salim G; Adela BB; Numan WC; Drizdal T; Yeo DT; Smolders AB
    Phys Med Biol; 2017 Mar; 62(5):1831-1847. PubMed ID: 28052042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques.
    Cheung AY; Neyzari A
    Cancer Res; 1984 Oct; 44(10 Suppl):4736s-4744s. PubMed ID: 6467228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators.
    Kaatee RS; Crezee H; Visser AG
    Phys Med Biol; 1999 Jun; 44(6):1499-511. PubMed ID: 10498519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study of a new microwave applicator for hyperthermia treatment of uterocervical cancer].
    Wang W; Ding R; Wang H; Li Y; Lin S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):175-7. PubMed ID: 11951512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The efficiency of clinical microwave applicators measured by a calorimetric method.
    Anhalt D; Hynynen K
    Med Phys; 1988; 15(6):919-21. PubMed ID: 3237152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.