These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37749115)
61. Technological Characterization of PET-Polyethylene Terephthalate-Added Soil-Cement Bricks. da Silva TR; Cecchin D; de Azevedo ARG; Valadão I; Alexandre J; da Silva FC; Marvila MT; Gunasekaran M; Garcia Filho F; Monteiro SN Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501126 [TBL] [Abstract][Full Text] [Related]
62. Fabrication of Thermal Insulation Bricks Using Ali SA; Fahmy MK; Zouli N; Abutaleb A; Maafa IM; Yousef A; Ahmed MM Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512180 [TBL] [Abstract][Full Text] [Related]
63. [Temporal and Spatial Distribution, Utilization Status, and Carbon Emission Reduction Potential of Straw Resources in China]. Yang CW; Xing F; Zhu JC; Li RH; Zhang ZQ Huan Jing Ke Xue; 2023 Feb; 44(2):1149-1162. PubMed ID: 36775637 [TBL] [Abstract][Full Text] [Related]
64. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry. Adazabra AN; Viruthagiri G; Shanmugam N J Environ Manage; 2017 Apr; 191():66-74. PubMed ID: 28088059 [TBL] [Abstract][Full Text] [Related]
65. Soil-Cement Bricks Development Using Polymeric Waste. Metzker SLO; Sabino TPF; Mendes JF; Ribeiro AGC; Mendes RF Environ Sci Pollut Res Int; 2022 Mar; 29(14):21034-21048. PubMed ID: 34748178 [TBL] [Abstract][Full Text] [Related]
66. The impact of brick kilns on environment and society: a bibliometric and thematic review. Parvez MA; Rana IA; Nawaz A; Arshad HSH Environ Sci Pollut Res Int; 2023 Apr; 30(17):48628-48653. PubMed ID: 36829095 [TBL] [Abstract][Full Text] [Related]
67. How to Prioritize Energy Efficiency Intervention in Municipal Public Buildings to Decrease CO Pietrapertosa F; Tancredi M; Giordano M; Cosmi C; Salvia M Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32575697 [TBL] [Abstract][Full Text] [Related]
68. Decarbonization potentials of the embodied energy use and operational process in buildings: A review from the life-cycle perspective. Liang Y; Li C; Liu Z; Wang X; Zeng F; Yuan X; Pan Y Heliyon; 2023 Oct; 9(10):e20190. PubMed ID: 37810847 [TBL] [Abstract][Full Text] [Related]
69. Recycling waste thermoplastic for energy efficient construction materials: An experimental investigation. Mondal MK; Bose BP; Bansal P J Environ Manage; 2019 Jun; 240():119-125. PubMed ID: 30928789 [TBL] [Abstract][Full Text] [Related]
70. Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings. Wi S; Yang S; Berardi U; Kim S Environ Int; 2019 Sep; 130():104900. PubMed ID: 31280051 [TBL] [Abstract][Full Text] [Related]
71. Template for Evaluating Cradle-to-Site Environmental Life Cycle Impacts of Buildings in India. Chaudhary A; Akhtar A ACS Environ Au; 2023 Mar; 3(2):94-104. PubMed ID: 37102085 [TBL] [Abstract][Full Text] [Related]
72. Production of Sustainable Construction Materials Using Agro-Wastes. Maraveas C Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936093 [TBL] [Abstract][Full Text] [Related]
73. Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks. Mohajerani A; Karabatak B Waste Manag; 2020 Apr; 107():252-265. PubMed ID: 32320938 [TBL] [Abstract][Full Text] [Related]
74. Multidisciplinary life cycle metrics and tools for green buildings. Helgeson JF; Lippiatt BC Integr Environ Assess Manag; 2009 Jul; 5(3):390-8. PubMed ID: 20050028 [TBL] [Abstract][Full Text] [Related]
75. Industrial production of recycled cement: energy consumption and carbon dioxide emission estimation. Sousa V; Bogas JA; Real S; Meireles I Environ Sci Pollut Res Int; 2023 Jan; 30(4):8778-8789. PubMed ID: 35616838 [TBL] [Abstract][Full Text] [Related]
76. Impact of concrete durability improvement on building life cycle carbon emissions: a case study of residential buildings in Northwest China. Zhu X; Liu Z; Zhang Y; Qiao H; Zhou Q Environ Sci Pollut Res Int; 2024 Oct; 31(47):57804-57821. PubMed ID: 39292304 [TBL] [Abstract][Full Text] [Related]
77. An Exploration of the Relationship between Improvements in Energy Efficiency and Life-Cycle Energy and Carbon Emissions using the BIRDS Low-Energy Residential Database. Kneifel J; O'Rear E; Webb D; O'Fallon C Energy Build; 2018 Feb; 160():19-33. PubMed ID: 29581650 [TBL] [Abstract][Full Text] [Related]
78. Climate impacts on extreme energy consumption of different types of buildings. Li M; Shi J; Guo J; Cao J; Niu J; Xiong M PLoS One; 2015; 10(4):e0124413. PubMed ID: 25923205 [TBL] [Abstract][Full Text] [Related]
79. Energy efficiency in winemaking industry: Challenges and opportunities. de Castro M; Baptista J; Matos C; Valente A; Briga-Sá A Sci Total Environ; 2024 Jun; 930():172383. PubMed ID: 38641114 [TBL] [Abstract][Full Text] [Related]
80. Beyond-the-Meter: Unaccounted Sources of Methane Emissions in the Natural Gas Distribution Sector. Saint-Vincent PMB; Pekney NJ Environ Sci Technol; 2020 Jan; 54(1):39-49. PubMed ID: 31809030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]