These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37749146)

  • 1. Author Correction: Investigation of thermal conductivity and thermal performance of heat pipes by structurally designed copolymer stabilized ZnO nanofluid.
    Pavithra KS; Parol V; Brusly Solomon A; Yashoda MP
    Sci Rep; 2023 Sep; 13(1):16048. PubMed ID: 37749146
    [No Abstract]   [Full Text] [Related]  

  • 2. Author Correction: Investigation of thermal conductivity and thermal performance of heat pipes by structurally designed copolymer stabilized ZnO nanofluid.
    Pavithra KS; Parol V; Brusly Solomon A; Yashoda MP
    Sci Rep; 2024 Jan; 14(1):1759. PubMed ID: 38243061
    [No Abstract]   [Full Text] [Related]  

  • 3. Investigation of thermal conductivity and thermal performance of heat pipes by structurally designed copolymer stabilized ZnO nanofluid.
    Pavithra KS; Parol V; Brusly Solomon A; Yashoda MP
    Sci Rep; 2023 Aug; 13(1):14219. PubMed ID: 37648693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.
    Zhao S; Xu G; Wang N; Zhang X
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29382094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of thermal conductivity on transient mixed convection in a vented cavity with a hollow cylinder and filled with CNT-water nanofluid.
    Hasan M; Priam SS; Nur-E Faiaz A; Azad AK; Rahman MM
    Heliyon; 2023 Mar; 9(3):e13850. PubMed ID: 36873521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Nanofluids in Improving the Performance of Double-Pipe Heat Exchangers-A Critical Review.
    Louis SP; Ushak S; Milian Y; Nemś M; Nemś A
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation of Thermal Conductivity of Water-Based Fe
    Barai DP; Bhanvase BA; Żyła G
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of thermal efficiency and thermal performance improvement of compound parabolic collector utilizing SiO
    Khaledi O; Saedodin S; Rostamian SH
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):12169-12188. PubMed ID: 36104648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges.
    Cheng L; Bandarra Filho EP; Thome JR
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3315-32. PubMed ID: 19051876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the effects of temperature and volume fraction on thermal conductivity of copper oxide nanofluid.
    Jwo CS; Chang H; Teng TP; Kao MJ; Guo YT
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2161-6. PubMed ID: 17655010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid.
    Pal R
    Nanomaterials (Basel); 2014 Oct; 4(4):844-855. PubMed ID: 28344252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of thermal characteristics of ZrO
    Barai RM; Kumar D; Wankhade AV; Sayed AR; Junankar AA
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25523-25531. PubMed ID: 35399131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study of thermal conductivity coefficient of GNSs-WO3/LP107160 hybrid nanofluid and development of a practical ANN modeling for estimating thermal conductivity.
    Razavi Dehkordi MH; Alizadeh A; Zekri H; Rasti E; Kholoud MJ; Abdollahi A; Azimy H
    Heliyon; 2023 Jun; 9(6):e17539. PubMed ID: 37416665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled molecular dynamics-stochastic model for thermal conductivity of ethylene glycol based copper nanofluid.
    Ghosh MM; Rai RK
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2752-71. PubMed ID: 24734688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system.
    Liu M; Lin MC; Wang C
    Nanoscale Res Lett; 2011 Apr; 6(1):297. PubMed ID: 21711787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dependent enhancement of heat transport in a nanofluid with ZnO nanoparticles.
    Neogy RK; Raychaudhuri AK
    Nanotechnology; 2009 Jul; 20(30):305706. PubMed ID: 19584421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical review on thermal conductivity enhancement of graphene-based nanofluids.
    Pavía M; Alajami K; Estellé P; Desforges A; Vigolo B
    Adv Colloid Interface Sci; 2021 Aug; 294():102452. PubMed ID: 34139659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conductivity enhancement in gold decorated graphene nanosheets in ethylene glycol based nanofluid.
    Mbambo MC; Madito MJ; Khamliche T; Mtshali CB; Khumalo ZM; Madiba IG; Mothudi BM; Maaza M
    Sci Rep; 2020 Sep; 10(1):14730. PubMed ID: 32895420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background.
    Wohld J; Beck J; Inman K; Palmer M; Cummings M; Fulmer R; Vafaei S
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into surface contribution towards heat transfer in a nanofluid.
    Singh A; Lenin R; Bari NK; Bakli C; Bera C
    Nanoscale Adv; 2020 Aug; 2(8):3507-3513. PubMed ID: 36134284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.