These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37749146)
21. Analysis of Heat Transfer Characteristics of a GnP Aqueous Nanofluid through a Double-Tube Heat Exchanger. Calviño U; Vallejo JP; Buschmann MH; Fernández-Seara J; Lugo L Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33806247 [TBL] [Abstract][Full Text] [Related]
22. The self-similar character of the microscopic thermal fluctuation inside an argon-copper nanofluid. Jia T; Gao D Phys Chem Chem Phys; 2016 Aug; 18(31):21930-6. PubMed ID: 27440418 [TBL] [Abstract][Full Text] [Related]
23. Preparation, Stability and Thermal Characteristic of Al₂O₃/Bio-Oil Based Nanofluids for Heat Transfer Applications. Umar S; Sulaiman F; Abdullah N; Mohamad SN J Nanosci Nanotechnol; 2020 Dec; 20(12):7569-7576. PubMed ID: 32711628 [TBL] [Abstract][Full Text] [Related]
24. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow. Teng TP; Hung YH; Teng TC; Chen JH Nanoscale Res Lett; 2011 Aug; 6(1):488. PubMed ID: 21827644 [TBL] [Abstract][Full Text] [Related]
25. New analytical models to investigate thermal conductivity of nanofluids. Chandrasekar M; Suresh S; Srinivasan R; Bose AC J Nanosci Nanotechnol; 2009 Jan; 9(1):533-8. PubMed ID: 19441346 [TBL] [Abstract][Full Text] [Related]
26. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time. Asadi A; Alarifi IM; Ali V; Nguyen HM Ultrason Sonochem; 2019 Nov; 58():104639. PubMed ID: 31450310 [TBL] [Abstract][Full Text] [Related]
27. Experimental Study on Characteristics of Grinded Graphene Nanofluids with Surfactants. Seong H; Kim G; Jeon J; Jeong H; Noh J; Kim Y; Kim H; Huh S Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29867066 [TBL] [Abstract][Full Text] [Related]
28. Impacts of Amplitude and Local Thermal Non-Equilibrium Design on Natural Convection within NanoflUid Superposed Wavy Porous Layers. Alsabery AI; Tayebi T; Abosinnee AS; Raizah ZAS; Chamkha AJ; Hashim I Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068022 [TBL] [Abstract][Full Text] [Related]
29. Study on the Characteristics of the Dispersion and Conductivity of Surfactants for the Nanofluids. Kim S Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564246 [TBL] [Abstract][Full Text] [Related]
30. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles. Apmann K; Fulmer R; Soto A; Vafaei S Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800374 [TBL] [Abstract][Full Text] [Related]
31. Polar surface effects on the thermal conductivity of ZnO nanowires: a shell-like surface reconstruction-induced preserving mechanism. Jiang JW; Park HS; Rabczuk T Nanoscale; 2013 Nov; 5(22):11035-43. PubMed ID: 24071784 [TBL] [Abstract][Full Text] [Related]
32. Exploring the thermo-physical characteristic of novel multi-wall carbon nanotube-Therminol-55-based nanofluids for solar-thermal applications. GaneshKumar P; Sakthivadivel D; Prabakaran R; Vigneswaran S; SakthiPriya M; Thakur AK; Sathyamurthy R; Kim SC Environ Sci Pollut Res Int; 2022 Feb; 29(7):10717-10728. PubMed ID: 34528193 [TBL] [Abstract][Full Text] [Related]
34. Sonication time efficacy on Fe Zheng Y; Shahsavar A; Afrand M Ultrason Sonochem; 2020 Jun; 64():105004. PubMed ID: 32171684 [TBL] [Abstract][Full Text] [Related]
35. Role of copper and alumina for heat transfer in hybrid nanofluid by using Fourier sine transform. Souayeh B; Abro KA; Siyal A; Hdhiri N; Hammami F; Al-Shaeli M; Alnaim N; Raju SSK; Alam MW; Alsheddi T Sci Rep; 2022 Jul; 12(1):11307. PubMed ID: 35789186 [TBL] [Abstract][Full Text] [Related]
36. Prediction of Thermo-Physical Properties of TiO Sadeghzadeh M; Maddah H; Ahmadi MH; Khadang A; Ghazvini M; Mosavi A; Nabipour N Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32272574 [TBL] [Abstract][Full Text] [Related]
37. Stability and Thermophysical Properties of GNP-Fe Borode A; Tshephe T; Olubambi P; Sharifpur M; Meyer J Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049331 [TBL] [Abstract][Full Text] [Related]
38. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride. Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396 [TBL] [Abstract][Full Text] [Related]
39. Development of a new theoretical model for blood-CNTs effective thermal conductivity pertaining to hyperthermia therapy of glioblastoma multiform. Benos L; Spyrou LA; Sarris IE Comput Methods Programs Biomed; 2019 Apr; 172():79-85. PubMed ID: 30902129 [TBL] [Abstract][Full Text] [Related]
40. Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling. Jen Wai O; Gunnasegaran P; Hasini H Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]