BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37749240)

  • 1. Plantorganelle Hunter is an effective deep-learning-based method for plant organelle phenotyping in electron microscopy.
    Feng X; Yu Z; Fang H; Jiang H; Yang G; Chen L; Zhou X; Hu B; Qin C; Hu G; Xing G; Zhao B; Shi Y; Guo J; Liu F; Han B; Zechmann B; He Y; Liu F
    Nat Plants; 2023 Oct; 9(10):1760-1775. PubMed ID: 37749240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning based domain adaptation for mitochondria segmentation on EM volumes.
    Franco-Barranco D; Pastor-Tronch J; González-Marfil A; Muñoz-Barrutia A; Arganda-Carreras I
    Comput Methods Programs Biomed; 2022 Jul; 222():106949. PubMed ID: 35753105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated segmentation of cell organelles in volume electron microscopy using deep learning.
    Nešić N; Heiligenstein X; Zopf L; Blüml V; Keuenhof KS; Wagner M; Höög JL; Qi H; Li Z; Tsaramirsis G; Peddie CJ; Stojmenović M; Walter A
    Microsc Res Tech; 2024 Mar; ():. PubMed ID: 38501891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A workflow for the automatic segmentation of organelles in electron microscopy image stacks.
    Perez AJ; Seyedhosseini M; Deerinck TJ; Bushong EA; Panda S; Tasdizen T; Ellisman MH
    Front Neuroanat; 2014; 8():126. PubMed ID: 25426032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepLearnMOR: a deep-learning framework for fluorescence image-based classification of organelle morphology.
    Li J; Peng J; Jiang X; Rea AC; Peng J; Hu J
    Plant Physiol; 2021 Aug; 186(4):1786-1799. PubMed ID: 34618108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation.
    Yan Z; Yang X; Cheng KT
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1912-1923. PubMed ID: 29993396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing manual operation time to obtain a segmentation learning model for volume electron microscopy using stepwise deep learning with manual correction.
    Konishi K; Nonaka T; Takei S; Ohta K; Nishioka H; Suga M
    Microscopy (Oxf); 2021 Nov; 70(6):526-535. PubMed ID: 34259875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SurgAI: deep learning for computerized laparoscopic image understanding in gynaecology.
    Madad Zadeh S; Francois T; Calvet L; Chauvet P; Canis M; Bartoli A; Bourdel N
    Surg Endosc; 2020 Dec; 34(12):5377-5383. PubMed ID: 31996995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images.
    Cid-Mejías A; Alonso-Calvo R; Gavilán H; Crespo J; Maojo V
    Comput Methods Programs Biomed; 2021 Apr; 202():105958. PubMed ID: 33588253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset.
    Conrad R; Narayan K
    Cell Syst; 2023 Jan; 14(1):58-71.e5. PubMed ID: 36657391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cascaded Deep Learning Framework for Segmentation of Nuclei in Digital Histology Images.
    Saednia K; Tran WT; Sadeghi-Naini A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4764-4767. PubMed ID: 36086360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Mitochondria Segmentation for EM Data Using a 3D Supervised Convolutional Network.
    Xiao C; Chen X; Li W; Li L; Wang L; Xie Q; Han H
    Front Neuroanat; 2018; 12():92. PubMed ID: 30450040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
    Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric 3D reconstruction of plant leaf cells using SEM, ion milling, TEM, and serial sectioning.
    Zechmann B; Möstl S; Zellnig G
    Planta; 2022 May; 255(6):118. PubMed ID: 35522384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of mitochondria and endolysosomes in volumetric electron microscopy data.
    Žerovnik Mekuč M; Bohak C; Hudoklin S; Kim BH; Romih R; Kim MY; Marolt M
    Comput Biol Med; 2020 Apr; 119():103693. PubMed ID: 32339123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.
    Yasrab R; Atkinson JA; Wells DM; French AP; Pridmore TP; Pound MP
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31702012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.