These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37749280)

  • 21. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions.
    Bader M; Abouelhoda MI; Ohlebusch E
    BMC Bioinformatics; 2008 Dec; 9():516. PubMed ID: 19055792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sorting Permutations by Intergenic Operations.
    Oliveira AR; Jean G; Fertin G; Brito KL; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2080-2093. PubMed ID: 33945484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rearrangement distance with reversals, indels, and moves in intergenic regions on signed and unsigned permutations.
    Brito KL; Oliveira AR; Alexandrino AO; Dias U; Dias Z
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350009. PubMed ID: 37104034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes.
    Bhatia S; Egri-Nagy A; Francis AR
    J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversal and Transposition Distance on Unbalanced Genomes Using Intergenic Information.
    Alexandrino AO; Oliveira AR; Jean G; Fertin G; Dias U; Dias Z
    J Comput Biol; 2023 Aug; 30(8):861-876. PubMed ID: 37222724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorting signed circular permutations by super short operations.
    Oliveira AR; Fertin G; Dias U; Dias Z
    Algorithms Mol Biol; 2018; 13():13. PubMed ID: 30065782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locating rearrangement events in a phylogeny based on highly fragmented assemblies.
    Zheng C; Sankoff D
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):1. PubMed ID: 26818753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sorting Signed Permutations by Inverse Tandem Duplication Random Losses.
    Hartmann T; Bannach M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2177-2188. PubMed ID: 31095495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating true evolutionary distances under rearrangements, duplications, and losses.
    Lin Y; Rajan V; Swenson KM; Moret BM
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S54. PubMed ID: 20122229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extending the algebraic formalism for genome rearrangements to include linear chromosomes.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorting permutations by fragmentation-weighted operations.
    Alexandrino AO; Lintzmayer CN; Dias Z
    J Bioinform Comput Biol; 2020 Apr; 18(2):2050006. PubMed ID: 32326802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Labeled Cycle Graph for Transposition and Indel Distance.
    Alexandrino AO; Oliveira AR; Dias U; Dias Z
    J Comput Biol; 2022 Mar; 29(3):243-256. PubMed ID: 34724796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sorting Signed Permutations by Intergenic Reversals.
    Oliveira AR; Jean G; Fertin G; Brito KL; Bulteau L; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2870-2876. PubMed ID: 32396097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Exact Algorithm for Sorting by Weighted Preserving Genome Rearrangements.
    Hartmann T; Bernt M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):52-62. PubMed ID: 29994030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast phylogenetic methods for the analysis of genome rearrangement data: an empirical study.
    Wang LS; Jansen RK; Moret BM; Raubeson LA; Warnow T
    Pac Symp Biocomput; 2002; ():524-35. PubMed ID: 11928504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple genome rearrangement by reversals.
    Wu S; Gu X
    Pac Symp Biocomput; 2002; ():259-70. PubMed ID: 11928481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rearrangement moves on rooted phylogenetic networks.
    Gambette P; van Iersel L; Jones M; Lafond M; Pardi F; Scornavacca C
    PLoS Comput Biol; 2017 Aug; 13(8):e1005611. PubMed ID: 28763439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An algebraic model for inversion and deletion in bacterial genome rearrangement.
    Clark C; Jonušas J; Mitchell JD; Francis A
    J Math Biol; 2023 Jul; 87(2):34. PubMed ID: 37517046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome Rearrangement Distance With a Flexible Intergenic Regions Aspect.
    Brito KL; Alexandrino AO; Oliveira AR; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1641-1653. PubMed ID: 35385387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.