These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37749470)
1. Acclimation of electroactive biofilms under different operating conditions: comprehensive analysis from architecture, composition, and metabolic activity. Ma H; Dong X; Yan Y; Shi K; Wang H; Lu H; Xue J; Qiao Y; Cheng D; Jiang Q Environ Sci Pollut Res Int; 2023 Oct; 30(49):108176-108187. PubMed ID: 37749470 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneous Structure Regulated by Selection Pressure on Bacterial Adhesion Optimized the Viability Stratification Structure of Electroactive Biofilms. Chen X; Li Y; Wu J; Li N; He W; Feng Y; Liu J ACS Appl Mater Interfaces; 2022 Jan; 14(2):2754-2767. PubMed ID: 34982530 [TBL] [Abstract][Full Text] [Related]
3. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Zhang X; Prévoteau A; Louro RO; Paquete CM; Rabaey K Biosens Bioelectron; 2018 Dec; 121():183-191. PubMed ID: 30218926 [TBL] [Abstract][Full Text] [Related]
5. Coordinated response of Au-NPs/rGO modified electroactive biofilms under phenolic compounds shock: Comprehensive analysis from architecture, composition, and activity. Li B; Sun JD; Tang C; Zhou J; Wu XY; Jia HH; Wei P; Zhang YF; Yong XY Water Res; 2021 Feb; 189():116589. PubMed ID: 33166922 [TBL] [Abstract][Full Text] [Related]
6. Periodic step polarization accelerates electron recovery by electroactive biofilms (EABs). Gao Y; Xia L; Yao P; Lee HS Biotechnol Bioeng; 2023 Jun; 120(6):1545-1556. PubMed ID: 36782377 [TBL] [Abstract][Full Text] [Related]
7. Effect of nickel (II) on the performance of anodic electroactive biofilms in bioelectrochemical systems. Amanze C; Zheng X; Anaman R; Wu X; Fosua BA; Xiao S; Xia M; Ai C; Yu R; Wu X; Shen L; Liu Y; Li J; Dolgor E; Zeng W Water Res; 2022 Aug; 222():118889. PubMed ID: 35907303 [TBL] [Abstract][Full Text] [Related]
8. Linking proteomic function and structure to electroactive biofilms development across electrode orientations. Dong Y; Jiang Y; Sui M; Yu J; Wu J; Gu Z; Zhou X Bioresour Technol; 2024 Nov; 412():131375. PubMed ID: 39214174 [TBL] [Abstract][Full Text] [Related]
9. Reduction of S Zhao Q; Liu Y; Liao C; Yan X; Tian L; Li T; Li N; Wang X Sci Total Environ; 2023 Jul; 882():163698. PubMed ID: 37094684 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems. Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463 [TBL] [Abstract][Full Text] [Related]
11. Advances in mechanisms and engineering of electroactive biofilms. You Z; Li J; Wang Y; Wu D; Li F; Song H Biotechnol Adv; 2023 Sep; 66():108170. PubMed ID: 37148984 [TBL] [Abstract][Full Text] [Related]
12. Insights into the response of electroactive biofilm with petroleum hydrocarbons degradation ability to quorum sensing signals. Xue J; Ma H; Dong X; Shi K; Zhou X; Qiao Y; Gao Y; Liu Y; Feng Y; Jiang Q J Hazard Mater; 2024 Jun; 471():134407. PubMed ID: 38677122 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic insights into the response of electroactive biofilms to Cd Yang FA; Hou YN; Cao C; Ren N; Wang AJ; Guo J; Liu Z; Huang C J Hazard Mater; 2023 Oct; 459():132183. PubMed ID: 37531766 [TBL] [Abstract][Full Text] [Related]
14. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Chen S; Jing X; Tang J; Fang Y; Zhou S Biosens Bioelectron; 2017 Nov; 97():369-376. PubMed ID: 28624619 [TBL] [Abstract][Full Text] [Related]
15. Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes. Jiang Z; Zhang D; Zhou L; Deng D; Duan M; Liu Y Anal Chim Acta; 2018 Dec; 1035():51-59. PubMed ID: 30224144 [TBL] [Abstract][Full Text] [Related]
16. Electron Storage in Electroactive Biofilms. Ter Heijne A; Pereira MA; Pereira J; Sleutels T Trends Biotechnol; 2021 Jan; 39(1):34-42. PubMed ID: 32646618 [TBL] [Abstract][Full Text] [Related]
17. Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Li Z; Zhang P; Qiu Y; Zhang Z; Wang X; Yu Y; Feng Y Sci Total Environ; 2021 Mar; 762():143142. PubMed ID: 33168253 [TBL] [Abstract][Full Text] [Related]
18. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Korth B; Rosa LF; Harnisch F; Picioreanu C Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352 [TBL] [Abstract][Full Text] [Related]
19. Redox potential-induced regulation of extracellular polymeric substances in an electroactive mixed community biofilm. Guo J; Yang G; Zhuang Z; Mai Q; Zhuang L Sci Total Environ; 2021 Nov; 797():149207. PubMed ID: 34311380 [TBL] [Abstract][Full Text] [Related]
20. A chip-based 128-channel potentiostat for high-throughput studies of bioelectrochemical systems: Optimal electrode potentials for anodic biofilms. Molderez TR; Prévoteau A; Ceyssens F; Verhelst M; Rabaey K Biosens Bioelectron; 2021 Feb; 174():112813. PubMed ID: 33303324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]