These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37749645)

  • 1. Criterion validity of wrist accelerometry for assessing energy intake via the intake-balance technique.
    Hibbing PR; Welk GJ; Ries D; Yeh HW; Shook RP
    Int J Behav Nutr Phys Act; 2023 Sep; 20(1):115. PubMed ID: 37749645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting energy intake with an accelerometer-based intake-balance method.
    Hibbing PR; Shook RP; Panda S; Manoogian ENC; Mashek DG; Chow LS
    Br J Nutr; 2023 Jul; 130(2):344-352. PubMed ID: 36250527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study.
    Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Intake Derived from an Energy Balance Equation, Validated Activity Monitors, and Dual X-Ray Absorptiometry Can Provide Acceptable Caloric Intake Data among Young Adults.
    Shook RP; Hand GA; O'Connor DP; Thomas DM; Hurley TG; Hébert JR; Drenowatz C; Welk GJ; Carriquiry AL; Blair SN
    J Nutr; 2018 Mar; 148(3):490-496. PubMed ID: 29546294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study.
    White T; Westgate K; Hollidge S; Venables M; Olivier P; Wareham N; Brage S
    Int J Obes (Lond); 2019 Nov; 43(11):2333-2342. PubMed ID: 30940917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commercial Devices Provide Estimates of Energy Balance with Varying Degrees of Validity in Free-Living Adults.
    Shook RP; Yeh HW; Welk GJ; Davis AM; Ries D
    J Nutr; 2022 Feb; 152(2):630-638. PubMed ID: 34642741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies.
    O'Driscoll R; Turicchi J; Beaulieu K; Scott S; Matu J; Deighton K; Finlayson G; Stubbs J
    Br J Sports Med; 2020 Mar; 54(6):332-340. PubMed ID: 30194221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.
    Imboden MT; Nelson MB; Kaminsky LA; Montoye AH
    Br J Sports Med; 2018 Jul; 52(13):844-850. PubMed ID: 28483930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Device Agnostic Approach to Predict Children's Activity from Consumer Wearable Accelerometer Data: A Proof-of-Concept Study.
    Weaver RG; White J; Finnegan O; Nelakuditi S; Zhu X; Burkart S; Beets M; Brown T; Pate R; Welk GJ; DE Zambotti M; Ghosal R; Wang Y; Armstrong B; Adams EL; Reesor-Oyer L; Pfledderer CD; Bastyr M; VON Klinggraeff L; Parker H
    Med Sci Sports Exerc; 2024 Feb; 56(2):370-379. PubMed ID: 37707503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of three accelerometry-based devices for estimating energy expenditure in adults and children with cerebral palsy.
    Ryan JM; Walsh M; Gormley J
    J Neuroeng Rehabil; 2014 Aug; 11():116. PubMed ID: 25097005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab-based validation of different data processing methods for wrist-worn ActiGraph accelerometers in young adults.
    Ellingson LD; Hibbing PR; Kim Y; Frey-Law LA; Saint-Maurice PF; Welk GJ
    Physiol Meas; 2017 Jun; 38(6):1045-1060. PubMed ID: 28481750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An objective estimate of energy intake during weight gain using the intake-balance method.
    Gilmore LA; Ravussin E; Bray GA; Han H; Redman LM
    Am J Clin Nutr; 2014 Sep; 100(3):806-12. PubMed ID: 25057153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.
    Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C
    J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of imposed exercise on energy intake in children at risk for overweight.
    Fearnbach SN; Masterson TD; Schlechter HA; Ross AJ; Rykaczewski MJ; Loken E; Downs DS; Thivel D; Keller KL
    Nutr J; 2016 Oct; 15(1):92. PubMed ID: 27769274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis.
    Foster E; Lee C; Imamura F; Hollidge SE; Westgate KL; Venables MC; Poliakov I; Rowland MK; Osadchiy T; Bradley JC; Simpson EL; Adamson AJ; Olivier P; Wareham N; Forouhi NG; Brage S
    J Nutr Sci; 2019; 8():e29. PubMed ID: 31501691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of 24-h recalls in (pre-)school aged children: comparison of proxy-reported energy intakes with measured energy expenditure.
    Börnhorst C; Bel-Serrat S; Pigeot I; Huybrechts I; Ottavaere C; Sioen I; De Henauw S; Mouratidou T; Mesana MI; Westerterp K; Bammann K; Lissner L; Eiben G; Pala V; Rayson M; Krogh V; Moreno LA;
    Clin Nutr; 2014 Feb; 33(1):79-84. PubMed ID: 23622780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry.
    Gomersall SR; Ng N; Burton NW; Pavey TG; Gilson ND; Brown WJ
    J Med Internet Res; 2016 Sep; 18(9):e239. PubMed ID: 27604226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Misreport of energy intake assessed with food records and 24-h recalls compared with total energy expenditure estimated with DLW.
    Lopes TS; Luiz RR; Hoffman DJ; Ferriolli E; Pfrimer K; Moura AS; Sichieri R; Pereira RA
    Eur J Clin Nutr; 2016 Nov; 70(11):1259-1264. PubMed ID: 27273069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Intake in Socially Vulnerable Women Living in Brazil: Assessment of the Accuracy of Two Methods of Dietary Intake Recording Using Doubly Labeled Water.
    Lins ILL; Bueno NB; Grotti Clemente AP; Pfrimer K; Sawaya AL; de Menezes Toledo Florêncio TM
    J Acad Nutr Diet; 2016 Oct; 116(10):1560-1567. PubMed ID: 27083987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model to determine energy intake during weight loss.
    Thomas DM; Schoeller DA; Redman LA; Martin CK; Levine JA; Heymsfield SB
    Am J Clin Nutr; 2010 Dec; 92(6):1326-31. PubMed ID: 20962159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.