These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37749905)
61. Enhanced growth of Sf-9 cells to a maximum density of 5.2 x 10(7) cells per mL and production of beta-galactosidase at high cell density by fed batch culture. Elias CB; Zeiser A; Bédard C; Kamen AA Biotechnol Bioeng; 2000 May; 68(4):381-8. PubMed ID: 10745206 [TBL] [Abstract][Full Text] [Related]
62. Improving the baculovirus expression vector system with vankyrin-enhanced technology. Steele KH; Stone BJ; Franklin KM; Fath-Goodin A; Zhang X; Jiang H; Webb BA; Geisler C Biotechnol Prog; 2017 Nov; 33(6):1496-1507. PubMed ID: 28649776 [TBL] [Abstract][Full Text] [Related]
63. Repurposing fed-batch media and feeds for highly productive CHO perfusion processes. Kuiper M; Spencer C; Fäldt E; Vuillemez A; Holmes W; Samuelsson T; Gruber D; Castan A Biotechnol Prog; 2019 Jul; 35(4):e2821. PubMed ID: 30985083 [TBL] [Abstract][Full Text] [Related]
64. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells. Bleckmann M; Schürig M; Chen FF; Yen ZZ; Lindemann N; Meyer S; Spehr J; van den Heuvel J PLoS One; 2016; 11(3):e0149424. PubMed ID: 26934632 [TBL] [Abstract][Full Text] [Related]
65. Production of Japanese encephalitis virus-like particles in insect cells. Yamaji H; Konishi E Bioengineered; 2013; 4(6):438-42. PubMed ID: 23639981 [TBL] [Abstract][Full Text] [Related]
66. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P; Nguyen NH Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940 [TBL] [Abstract][Full Text] [Related]
67. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Hjersted JL; Henson MA; Mahadevan R Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146 [TBL] [Abstract][Full Text] [Related]
68. Protein Production Using the Baculovirus Expression System. Irons SL; Chambers AC; Lissina O; King LA; Possee RD Curr Protoc Protein Sci; 2018 Feb; 91():5.5.1-5.5.22. PubMed ID: 29516484 [TBL] [Abstract][Full Text] [Related]
69. Vaccines for viral and parasitic diseases produced with baculovirus vectors. van Oers MM Adv Virus Res; 2006; 68():193-253. PubMed ID: 16997013 [TBL] [Abstract][Full Text] [Related]
70. Recombinant protein production in insect cell cultures infected with a temperature-sensitive baculovirus. Wu J; King GA; Daugulis AJ; Faulkner P; Goosen MF Cytotechnology; 1992; 9(1-3):141-7. PubMed ID: 1369167 [TBL] [Abstract][Full Text] [Related]
71. Improved production of human type II procollagen in the yeast Pichia pastoris in shake flasks by a wireless-controlled fed-batch system. Ruottinen M; Bollok M; Kögler M; Neubauer A; Krause M; Hämäläinen ER; Myllyharju J; Vasala A; Neubauer P BMC Biotechnol; 2008 Mar; 8():33. PubMed ID: 18371201 [TBL] [Abstract][Full Text] [Related]
72. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Shin CS; Hong MS; Bae CS; Lee J Biotechnol Prog; 1997; 13(3):249-57. PubMed ID: 9190075 [TBL] [Abstract][Full Text] [Related]
73. Evaluation of baculovirus expression vectors with enhanced stability in continuous cascaded insect-cell bioreactors. Pijlman GP; de Vrij J; van den End FJ; Vlak JM; Martens DE Biotechnol Bioeng; 2004 Sep; 87(6):743-53. PubMed ID: 15329932 [TBL] [Abstract][Full Text] [Related]
74. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Philip P; Kern D; Goldmanns J; Seiler F; Schulte A; Habicher T; Büchs J Microb Cell Fact; 2018 May; 17(1):69. PubMed ID: 29743073 [TBL] [Abstract][Full Text] [Related]
75. Optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22 in batch, fed-batch, and continuous cultures. Gawande BN; Sonawane AM; Jogdand VV; Patkar AY Biotechnol Prog; 2003; 19(6):1697-702. PubMed ID: 14656144 [TBL] [Abstract][Full Text] [Related]
76. Real-time online monitoring of insect cell proliferation and baculovirus infection using digital differential holographic microscopy and machine learning. Altenburg JJ; Klaverdijk M; Cabosart D; Desmecht L; Brunekreeft-Terlouw SS; Both J; Tegelbeckers VIP; Willekens MLPM; van Oosten L; Hick TAH; van der Aalst TMH; Pijlman GP; van Oers MM; Wijffels RH; Martens DE Biotechnol Prog; 2023 Mar; 39(2):e3318. PubMed ID: 36512364 [TBL] [Abstract][Full Text] [Related]
77. Small-Scale Production of Recombinant Proteins Using the Baculovirus Expression Vector System. Yang JP Methods Mol Biol; 2016; 1350():225-39. PubMed ID: 26820860 [TBL] [Abstract][Full Text] [Related]
78. Improved poliovirus D-antigen yields by application of different Vero cell cultivation methods. Thomassen YE; Rubingh O; Wijffels RH; van der Pol LA; Bakker WA Vaccine; 2014 May; 32(24):2782-8. PubMed ID: 24583004 [TBL] [Abstract][Full Text] [Related]
79. Modelling the growth and protein production by insect cells following infection by a recombinant baculovirus in suspension culture. Power J; Greenfield PF; Nielsen L; Reid S Cytotechnology; 1992; 9(1-3):149-55. PubMed ID: 1369168 [TBL] [Abstract][Full Text] [Related]
80. [Expression of human retinol-binding protein 4 in insect baculovirus system and preparation of its polyclonal antibody]. Ren Y; Chen D; Guo Y; Shi H; Liu J; Ban J; Liu Y; Wu X; Wang W; Cheng H; Li D; Liu Y; Wang L Sheng Wu Gong Cheng Xue Bao; 2013 Jul; 29(7):974-85. PubMed ID: 24195364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]