BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37750045)

  • 1. A fast analytical dose calculation approach for MRI-guided proton therapy.
    Duetschler A; Winterhalter C; Meier G; Safai S; Weber DC; Lomax AJ; Zhang Y
    Phys Med Biol; 2023 Sep; 68(19):. PubMed ID: 37750045
    [No Abstract]   [Full Text] [Related]  

  • 2. A pencil beam algorithm for magnetic resonance image-guided proton therapy.
    Padilla-Cabal F; Georg D; Fuchs H
    Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study.
    Giantsoudi D; Schuemann J; Jia X; Dowdell S; Jiang S; Paganetti H
    Phys Med Biol; 2015 Mar; 60(6):2257-69. PubMed ID: 25715661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton beam behavior in a parallel configured MRI-proton therapy hybrid: Effects of time-varying gradient magnetic fields.
    Santos DM; Wachowicz K; Burke B; Fallone BG
    Med Phys; 2019 Feb; 46(2):822-838. PubMed ID: 30488968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GPU-based fast Monte Carlo code that supports proton transport in magnetic field for radiation therapy.
    Li S; Cheng B; Wang Y; Pei X; Xu XG
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14208. PubMed ID: 37987549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of motion on onboard MRI-guided pencil beam scanned proton therapy treatments.
    Duetschler A; Safai S; Weber DC; Lomax AJ; Zhang Y
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38537287
    [No Abstract]   [Full Text] [Related]  

  • 8. Implementation of a dose calculation algorithm based on Monte Carlo simulations for treatment planning towards MRI guided ion beam therapy.
    Padilla-Cabal F; Resch AF; Georg D; Fuchs H
    Phys Med; 2020 Jun; 74():155-165. PubMed ID: 32480358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation.
    Shan J; Feng H; Morales DH; Patel SH; Wong WW; Fatyga M; Bues M; Schild SE; Foote RL; Liu W
    Med Phys; 2022 Oct; 49(10):6666-6683. PubMed ID: 35960865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay.
    Lysakovski P; Besuglow J; Kopp B; Mein S; Tessonnier T; Ferrari A; Haberer T; Debus J; Mairani A
    Med Phys; 2023 Apr; 50(4):2510-2524. PubMed ID: 36542403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an extended Macro Monte Carlo method for efficient and accurate dose calculation in magnetic fields.
    Kueng R; Guyer G; Volken W; Frei D; Stabel F; Stampanoni MFM; Manser P; Fix MK
    Med Phys; 2020 Dec; 47(12):6519-6530. PubMed ID: 33075168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an algorithm for proton dose calculation in magnetic fields.
    Gu Y; Wang Y; Liu M; Lu HM; Yang Y
    Med Phys; 2024 Jun; ():. PubMed ID: 38922910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy.
    Fuchs H; Moser P; Gröschl M; Georg D
    Med Phys; 2017 Mar; 44(3):1149-1156. PubMed ID: 28090633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commissioning a beam line for MR-guided particle therapy assisted by in silico methods.
    Fuchs H; Padilla-Cabal F; Oborn BM; Georg D
    Med Phys; 2023 Feb; 50(2):1019-1028. PubMed ID: 36504399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical validation of a GPU-based Monte Carlo dose engine of a commercial treatment planning system for pencil beam scanning proton therapy.
    Fracchiolla F; Engwall E; Janson M; Tamm F; Lorentini S; Fellin F; Bertolini M; Algranati C; Righetto R; Farace P; Amichetti M; Schwarz M
    Phys Med; 2021 Aug; 88():226-234. PubMed ID: 34311160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy.
    Pastor-Serrano O; Perkó Z
    Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35447605
    [No Abstract]   [Full Text] [Related]  

  • 17. MOQUI: an open-source GPU-based Monte Carlo code for proton dose calculation with efficient data structure.
    Lee H; Shin J; Verburg JM; Bobić M; Winey B; Schuemann J; Paganetti H
    Phys Med Biol; 2022 Aug; 67(17):. PubMed ID: 35926482
    [No Abstract]   [Full Text] [Related]  

  • 18. Dosimetric Deviations of Bragg-Peak Position Shifts in Uniform Magnetic Fields for Magnetic Resonance Imaging-Guiding Proton Radiotherapy: A Monte Carlo Study.
    Wang X; Pan H; Cheng Q; Wang X; Xu W
    Front Public Health; 2021; 9():641915. PubMed ID: 34414150
    [No Abstract]   [Full Text] [Related]  

  • 19. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea.
    Shin WG; Testa M; Kim HS; Jeong JH; Lee SB; Kim YJ; Min CH
    Phys Med Biol; 2017 Sep; 62(19):7598-7616. PubMed ID: 28809759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung.
    Magro G; Mein S; Kopp B; Mastella E; Pella A; Ciocca M; Mairani A
    Phys Med; 2021 Jun; 86():66-74. PubMed ID: 34058719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.