BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37750430)

  • 1. Generation of translucent Xenopus tropicalis through triple knockout of pigmentation genes.
    Nakajima K; Tazawa I; Furuno N
    Dev Growth Differ; 2023 Dec; 65(9):591-598. PubMed ID: 37750430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of no-yellow-pigment Xenopus tropicalis by slc2a7 gene knockout.
    Nakajima K; Shimamura M; Furuno N
    Dev Dyn; 2021 Oct; 250(10):1420-1431. PubMed ID: 33760303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development.
    Nakayama T; Nakajima K; Cox A; Fisher M; Howell M; Fish MB; Yaoita Y; Grainger RM
    Dev Biol; 2017 Jun; 426(2):472-486. PubMed ID: 27595926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing mitf functions and visualizing allografted tumor metastasis in colorless and immunodeficient Xenopus tropicalis.
    Ran R; Li L; Xu T; Huang J; He H; Chen Y
    Commun Biol; 2024 Mar; 7(1):275. PubMed ID: 38443437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual leucophore-like cells specifically appear in the lineage of melanophores in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Pigment Cell Res; 2004 Jun; 17(3):252-61. PubMed ID: 15140070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic albinism of a widely used albino mutant of Xenopus laevis caused by deletion of two exons in the Hermansky-Pudlak syndrome type 4 gene.
    Fukuzawa T
    Genes Cells; 2021 Jan; 26(1):31-39. PubMed ID: 33147376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The first see-through frog created by breeding: description, inheritance patterns, and dermal chromatophore structure.
    Sumida M; Islam MM; Igawa T; Kurabayashi A; Furukawa Y; Sano N; Fujii T; Yoshizaki N
    Sci Rep; 2016 Apr; 6():24431. PubMed ID: 27080918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2010 Oct; 342(1):53-66. PubMed ID: 20859642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and experimental studies on a new pigment mutant in Xenopus laevis.
    Droin A
    J Exp Zool; 1992 Nov; 264(2):196-205. PubMed ID: 1431781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the skin secretion of Xenopus laevis on its dermal melanophores.
    BURGERS AC; VAN OORDT GJ
    Acta Endocrinol (Copenh); 1956 Nov; 23(3):265-73. PubMed ID: 13381389
    [No Abstract]   [Full Text] [Related]  

  • 11. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis.
    Nakayama T; Grainger RM; Cha SW
    Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic pigment-cell stimulating activity in the catfish integument.
    Zuasti A; Johnson WC; Samaraweera P; Bagnara JT
    Pigment Cell Res; 1992 Nov; 5(5 Pt 1):253-62. PubMed ID: 1363134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative ultrastructural and physiological study on melanophores of wild-type and periodic albino mutants of Xenopus laevis.
    Seldenrijk R; Huijsman KG; Heussen AM; van de Veerdonk FC
    Cell Tissue Res; 1982; 222(1):1-9. PubMed ID: 6800656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of pigment cells in cultured frog skin.
    Denefle JP; Lechaire JP
    Am J Anat; 1990 Jun; 188(2):212-20. PubMed ID: 2375284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration.
    Kuriyama T; Miyaji K; Sugimoto M; Hasegawa M
    Zoolog Sci; 2006 Sep; 23(9):793-9. PubMed ID: 17043401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and experimental studies on a pigment mutation, Pale (Pa), in the frog, Bombina orientalis.
    Ellinger MS
    J Embryol Exp Morphol; 1980 Apr; 56():125-37. PubMed ID: 7400738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-CAM and N-cadherin are specifically expressed in xanthophores, but not in the other types of pigment cells, melanophores, and iridiphores.
    Fukuzawa T; Obika M
    Pigment Cell Res; 1995 Feb; 8(1):1-9. PubMed ID: 7792250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning, expression, and signaling pathway of four melanin-concentrating hormone receptors from Xenopus tropicalis.
    Kobayashi Y; Hamamoto A; Hirayama T; Saito Y
    Gen Comp Endocrinol; 2015 Feb; 212():114-23. PubMed ID: 24662390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electronmicroscopic studies on the skin pigmentation of the red bellied toad Bombina bombina (L.)].
    Eichelberg H; Obert HJ
    Gegenbaurs Morphol Jahrb; 1979; 125(1):1-14. PubMed ID: 478246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.