BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37751230)

  • 1. Thermal separation of plastic components from waste crystalline silicon solar cells: Thermogravimetric characteristics and thermokinetics.
    Huang Q; Yuan W; Guo Y; Ke Q
    J Air Waste Manag Assoc; 2023 Nov; 73(11):853-864. PubMed ID: 37751230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment.
    Wang R; Song E; Zhang C; Zhuang X; Ma E; Bai J; Yuan W; Wang J
    RSC Adv; 2019 Jun; 9(32):18115-18123. PubMed ID: 35515232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Recycling Process and Characterization of EVA, PVDF, and PET Polymers from End-of-Life PV Modules.
    Królikowski M; Fotek M; Żach P; Michałowski M
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and comprehensive recycling of valuable components from scrapped Si-based photovoltaic panels.
    Ding Y; He J; Zhang S; Jian J; Shi Z; Cao A
    Waste Manag; 2024 Mar; 175():183-190. PubMed ID: 38211472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 May; 38(1_suppl):77-85. PubMed ID: 31957598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules.
    Dias P; Javimczik S; Benevit M; Veit H
    Waste Manag; 2017 Feb; 60():716-722. PubMed ID: 27596942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis.
    Boubacar Laougé Z; Merdun H
    Bioresour Technol; 2020 Mar; 299():122602. PubMed ID: 31869633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling.
    Ardente F; Latunussa CEL; Blengini GA
    Waste Manag; 2019 May; 91():156-167. PubMed ID: 31203937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal decomposition kinetics of Prosopis juliflora charcoal briquette using thermogravimetric analysis.
    Kumar TTA; Ramesh SKT
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16626-16641. PubMed ID: 36190626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Behavior of Mixed Plastics at Different Heating Rates: I. Pyrolysis Kinetics.
    Dubdub I; Al-Yaari M
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoconversional thermal decomposition reaction kinetics of oil palm trunk and rubberwood sawdust for thermochemical conversion processes.
    Shrivastava P; Palamanit A; Kumar A
    Environ Sci Pollut Res Int; 2023 Aug; ():. PubMed ID: 37556055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis Kinetic Behaviour of Glass Fibre-Reinforced Epoxy Resin Composites Using Linear and Nonlinear Isoconversional Methods.
    Yousef S; Eimontas J; Striūgas N; Praspaliauskas M; Abdelnaby MA
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34064980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Characterization and gasification test.
    Arenales Rivera J; Pérez López V; Ramos Casado R; Sánchez Hervás JM
    Waste Manag; 2016 Jan; 47(Pt B):225-35. PubMed ID: 26013694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of thermokinetic behaviour of tannery sludge in slow pyrolysis process through artificial neural network.
    Khan A; Ali I; Naqvi SR; AlMohamadi H; Shahbaz M; Ali AM; Shahzad K
    Chemosphere; 2023 Oct; 337():139226. PubMed ID: 37379972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis kinetics behavior of solid leather wastes.
    Guan Y; Liu C; Peng Q; Zaman F; Zhang H; Jin Z; Wang A; Wang W; Huang Y
    Waste Manag; 2019 Dec; 100():122-127. PubMed ID: 31536922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for layer separation in waste crystalline silicon PV modules via combined low-temperature and thermal treatment.
    Wu Z; Wang S; Gao D; Wei X; Du C; Qi Z
    Waste Manag; 2023 Dec; 172():299-307. PubMed ID: 37935084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green separation and decomposition of crystalline silicon photovoltaic module's backsheet by using ethanol.
    Su P; He Y; Wang J; Feng Y; Wan Q; Zhang Y; Pang Z
    Waste Manag; 2024 Apr; 179():144-153. PubMed ID: 38471252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and thermodynamic analysis on preparation of belite-calcium sulphoaluminate cement using electrolytic manganese residue and barium slag by TGA.
    He W; Li R; Yang Y; Zhang Y; Nie D
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):95901-95916. PubMed ID: 37558917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Methodology for the Separation Materials in the Recycling Process of Silicon Photovoltaic Panels.
    Riech I; Castro-Montalvo C; Wittersheim L; Giácoman-Vallejos G; González-Sánchez A; Gamboa-Loira C; Acosta M; Méndez-Gamboa J
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.