These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37751377)
1. Vigna unguiculata L. Walp. Leaves as a Source of Phytochemicals of Dietary Interest: Optimization of Ultrasound-Assisted Extraction and Assessment of Traditional Consumer Habits. Pioltelli E; Sartirana C; Copetta A; Brioschi M; Labra M; Guzzetti L Chem Biodivers; 2023 Nov; 20(11):e202300797. PubMed ID: 37751377 [TBL] [Abstract][Full Text] [Related]
2. Phytochemical analysis by GC-MS, LC-MS complementary approaches and antimicrobial activity investigation of Dinore JM; Patil HS; Dobhal BS; Farooqui M Nat Prod Res; 2022 Nov; 36(21):5631-5637. PubMed ID: 34915795 [TBL] [Abstract][Full Text] [Related]
3. GC/MS and LC/MS Phytochemical Analysis of Vigna unguiculata L. Walp Pod. Mahavirsing Dinore J; Shivaji Patil H; Farooqui S; Pradhan V; Farooqui M Chem Biodivers; 2023 Feb; 20(2):e202200048. PubMed ID: 36576750 [TBL] [Abstract][Full Text] [Related]
4. Mead Production by Saccharomyces cerevisiae Safbrew T-58 and Saccharomyces bayanus (Premier Blanc and Premier Cuvée): Effect of Cowpea (Vigna unguiculata L. Walp) Extract Concentration. Araújo GS; Gutiérrez MP; Sampaio KF; de Souza SMA; Rodrigues RCLB; Martínez EA Appl Biochem Biotechnol; 2020 May; 191(1):212-225. PubMed ID: 32112188 [TBL] [Abstract][Full Text] [Related]
5. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Dahmoune F; Nayak B; Moussi K; Remini H; Madani K Food Chem; 2015 Jan; 166():585-595. PubMed ID: 25053097 [TBL] [Abstract][Full Text] [Related]
6. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. Gonçalves A; Goufo P; Barros A; Domínguez-Perles R; Trindade H; Rosa EA; Ferreira L; Rodrigues M J Sci Food Agric; 2016 Jul; 96(9):2941-51. PubMed ID: 26804459 [TBL] [Abstract][Full Text] [Related]
7. Seed coat metabolite profiling of cowpea ( Tsamo AT; Mohammed H; Mohammed M; Papoh Ndibewu P; Dapare Dakora F Nat Prod Res; 2020 Apr; 34(8):1158-1162. PubMed ID: 30663354 [TBL] [Abstract][Full Text] [Related]
8. Identification of Semiochemicals from Cowpea, Vigna unguiculata, for Low-input Management of the Legume Pod Borer, Maruca vitrata. Osei-Owusu J; Vuts J; Caulfield JC; Woodcock CM; Withall DM; Hooper AM; Osafo-Acquaah S; Birkett MA J Chem Ecol; 2020 Mar; 46(3):288-298. PubMed ID: 31953705 [TBL] [Abstract][Full Text] [Related]
9. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Nour V; Trandafir I; Cosmulescu S Pharm Biol; 2016 Oct; 54(10):2176-87. PubMed ID: 26959811 [TBL] [Abstract][Full Text] [Related]
10. Superior Valorisation of Tociu M; Manolache F; Bălănucă B; Moroșan A; Stan R Molecules; 2023 Oct; 28(21):. PubMed ID: 37959748 [TBL] [Abstract][Full Text] [Related]
12. Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Chen X; Ding J; Ji D; He S; Ma H J Food Sci; 2020 Jun; 85(6):1742-1751. PubMed ID: 32449951 [TBL] [Abstract][Full Text] [Related]
13. Optimization of Ultrasound-Assisted Extraction of Antioxidants from the Mung Bean Coat. Zhou Y; Zheng J; Gan RY; Zhou T; Xu DP; Li HB Molecules; 2017 Apr; 22(4):. PubMed ID: 28420146 [TBL] [Abstract][Full Text] [Related]
15. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity. Yang L; Yin P; Fan H; Xue Q; Li K; Li X; Sun L; Liu Y Molecules; 2017 Feb; 22(2):. PubMed ID: 28165408 [TBL] [Abstract][Full Text] [Related]
16. Analysis of ibuprofen and its main metabolites in roots, shoots, and seeds of cowpea (Vigna unguiculata L. Walp) using liquid chromatography-quadrupole time-of-flight mass spectrometry: uptake, metabolism, and translocation. Picó Y; Alvarez-Ruiz R; Wijaya L; Alfarhan A; Alyemeni M; Barceló D Anal Bioanal Chem; 2018 Jan; 410(3):1163-1176. PubMed ID: 29285645 [TBL] [Abstract][Full Text] [Related]
17. Comparative Evaluation of Different Extraction Techniques and Solvents for the Assay of Phytochemicals and Antioxidant Activity of Hashemi Rice Bran. Ghasemzadeh A; Jaafar HZ; Juraimi AS; Tayebi-Meigooni A Molecules; 2015 Jun; 20(6):10822-38. PubMed ID: 26111171 [TBL] [Abstract][Full Text] [Related]
18. Green Extraction of Antioxidant Flavonoids from Pigeon Pea ( Tungmunnithum D; Drouet S; Lorenzo JM; Hano C Molecules; 2021 Dec; 26(24):. PubMed ID: 34946637 [TBL] [Abstract][Full Text] [Related]
19. Ultrasound-Assisted Extraction of Antioxidants from Hosni S; Gani SSA; Orsat V; Hassan M; Abdullah S Molecules; 2023 Jan; 28(2):. PubMed ID: 36677546 [TBL] [Abstract][Full Text] [Related]
20. Supercritical CO₂ Extraction of Sut S; Boschiero I; Solana M; Malagoli M; Bertucco A; Dall'Acqua S Molecules; 2018 Dec; 23(12):. PubMed ID: 30544589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]