BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37751763)

  • 1. Development of a hyaluronic acid-collagen bioink for shear-induced fibers and cells alignment.
    Palladino S; Schwab A; Copes F; D'Este M; Candiani G; Mantovani D
    Biomed Mater; 2023 Oct; 18(6):. PubMed ID: 37751763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments.
    Mazzocchi A; Devarasetty M; Huntwork R; Soker S; Skardal A
    Biofabrication; 2018 Oct; 11(1):015003. PubMed ID: 30270846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment.
    Schwab A; Hélary C; Richards RG; Alini M; Eglin D; D'Este M
    Mater Today Bio; 2020 Jun; 7():100058. PubMed ID: 32613184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Bioprinted Hyaluronic Acid Hydrogel Test Beds for Assessing Neural Cell Responses to Competitive Growth Stimuli.
    Ngo TB; Spearman BS; Hlavac N; Schmidt CE
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6819-6830. PubMed ID: 33320621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers.
    Prendergast ME; Davidson MD; Burdick JA
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.
    Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A
    Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A targeted rheological bioink development guideline and its systematic correlation with printing behavior.
    Pössl A; Hartzke D; Schmidts TM; Runkel FE; Schlupp P
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33472177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs.
    Terpstra ML; Li J; Mensinga A; de Ruijter M; van Rijen MHP; Androulidakis C; Galiotis C; Papantoniou I; Matsusaki M; Malda J; Levato R
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35354130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally-controlled extrusion-based bioprinting of collagen.
    Moncal KK; Ozbolat V; Datta P; Heo DN; Ozbolat IT
    J Mater Sci Mater Med; 2019 Apr; 30(5):55. PubMed ID: 31041538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation.
    Mörö A; Samanta S; Honkamäki L; Rangasami VK; Puistola P; Kauppila M; Narkilahti S; Miettinen S; Oommen O; Skottman H
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36579828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink.
    Muthusamy S; Kannan S; Lee M; Sanjairaj V; Lu WF; Fuh JYH; Sriram G; Cao T
    Biotechnol Bioeng; 2021 Aug; 118(8):3150-3163. PubMed ID: 34037982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models.
    Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z
    Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications.
    Sekar MP; Suresh S; Zennifer A; Sethuraman S; Sundaramurthi D
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3134-3159. PubMed ID: 37115515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering.
    Visscher DO; Lee H; van Zuijlen PPM; Helder MN; Atala A; Yoo JJ; Lee SJ
    Acta Biomater; 2021 Feb; 121():193-203. PubMed ID: 33227486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting of human dermal microtissues precursors as building blocks for endogenous
    Scalzone A; Imparato G; Urciuolo F; Netti PA
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38574552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.