BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37751790)

  • 1. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield.
    van Aalst ACA; van der Meulen IS; Jansen MLA; Mans R; Pronk JT
    Metab Eng; 2023 Nov; 80():151-162. PubMed ID: 37751790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production.
    van Aalst ACA; Geraats EH; Jansen MLA; Mans R; Pronk JT
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37942589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification and mitigation of byproduct formation by low-glycerol-producing Saccharomyces cerevisiae strains containing Calvin-cycle enzymes.
    van Aalst ACA; Jansen MLA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):81. PubMed ID: 37173767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing anaerobic growth rate and fermentation kinetics in
    Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae.
    van Aalst ACA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):112. PubMed ID: 36253796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.
    Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ
    Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.
    Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM
    Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction.
    Ida Y; Hirasawa T; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in S
    Papapetridis I; van Dijk M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2017; 10():107. PubMed ID: 28450888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.
    Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS
    Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.
    Guadalupe-Medina V; Wisselink HW; Luttik MA; de Hulster E; Daran JM; Pronk JT; van Maris AJ
    Biotechnol Biofuels; 2013 Aug; 6(1):125. PubMed ID: 23987569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.
    Jain VK; Divol B; Prior BA; Bauer FF
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.
    Kim S; Hahn JS
    Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Conversion of Glycerol to Ethanol by an Engineered Saccharomyces cerevisiae Strain.
    Khattab SMR; Watanabe T
    Appl Environ Microbiol; 2021 Nov; 87(23):e0026821. PubMed ID: 34524902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.
    Pagliardini J; Hubmann G; Alfenore S; Nevoigt E; Bideaux C; Guillouet SE
    Microb Cell Fact; 2013 Mar; 12():29. PubMed ID: 23537043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.