BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37751864)

  • 21. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis.
    England K; Cotter TG
    Redox Rep; 2005; 10(5):237-45. PubMed ID: 16354412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.
    Duan J; Kodali VK; Gaffrey MJ; Guo J; Chu RK; Camp DG; Smith RD; Thrall BD; Qian WJ
    ACS Nano; 2016 Jan; 10(1):524-38. PubMed ID: 26700264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S-glutathionylation: from redox regulation of protein functions to human diseases.
    Giustarini D; Rossi R; Milzani A; Colombo R; Dalle-Donne I
    J Cell Mol Med; 2004; 8(2):201-12. PubMed ID: 15256068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems.
    Chakraborty S; Sircar E; Bhattacharyya C; Choudhuri A; Mishra A; Dutta S; Bhatta S; Sachin K; Sengupta R
    Antioxidants (Basel); 2022 Sep; 11(10):. PubMed ID: 36290644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanding roles for S-nitrosylation in the regulation of plant immunity.
    Borrowman S; Kapuganti JG; Loake GJ
    Free Radic Biol Med; 2023 Jan; 194():357-368. PubMed ID: 36513331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox regulatory mechanism of transnitrosylation by thioredoxin.
    Wu C; Liu T; Chen W; Oka S; Fu C; Jain MR; Parrott AM; Baykal AT; Sadoshima J; Li H
    Mol Cell Proteomics; 2010 Oct; 9(10):2262-75. PubMed ID: 20660346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling.
    Matamoros MA; Becana M
    J Exp Bot; 2021 Aug; 72(16):5876-5892. PubMed ID: 33453107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders.
    Nakamura T; Oh CK; Zhang X; Tannenbaum SR; Lipton SA
    Antioxid Redox Signal; 2021 Sep; 35(7):531-550. PubMed ID: 33957758
    [No Abstract]   [Full Text] [Related]  

  • 30. Causes and consequences of cysteine S-glutathionylation.
    Grek CL; Zhang J; Manevich Y; Townsend DM; Tew KD
    J Biol Chem; 2013 Sep; 288(37):26497-504. PubMed ID: 23861399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein Oxidative Modifications: Beneficial Roles in Disease and Health.
    Cai Z; Yan LJ
    J Biochem Pharmacol Res; 2013 Mar; 1(1):15-26. PubMed ID: 23662248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications.
    Hsieh HJ; Liu CA; Huang B; Tseng AH; Wang DL
    J Biomed Sci; 2014 Jan; 21(1):3. PubMed ID: 24410814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. STAT3 regulation by S-nitrosylation: implication for inflammatory disease.
    Kim J; Won JS; Singh AK; Sharma AK; Singh I
    Antioxid Redox Signal; 2014 Jun; 20(16):2514-27. PubMed ID: 24063605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins.
    Townsend DM; Findlay VJ; Fazilev F; Ogle M; Fraser J; Saavedra JE; Ji X; Keefer LK; Tew KD
    Mol Pharmacol; 2006 Feb; 69(2):501-8. PubMed ID: 16288082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas.
    Anathy V; Aesif SW; Guala AS; Havermans M; Reynaert NL; Ho YS; Budd RC; Janssen-Heininger YM
    J Cell Biol; 2009 Jan; 184(2):241-52. PubMed ID: 19171757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.
    Mailloux RJ; Jin X; Willmore WG
    Redox Biol; 2014; 2():123-39. PubMed ID: 24455476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein S-glutathionylation: from current basics to targeted modifications.
    Popov D
    Arch Physiol Biochem; 2014 Oct; 120(4):123-30. PubMed ID: 25112365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. S-nitrosocysteine and glutathione depletion synergize to induce cell death in human tumor cells: Insights into the redox and cytotoxic mechanisms.
    Knany A; Engelman R; Hariri HA; Biswal S; Wolfenson H; Benhar M
    Free Radic Biol Med; 2020 Nov; 160():566-574. PubMed ID: 32898624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox regulation of cell survival.
    Trachootham D; Lu W; Ogasawara MA; Nilsa RD; Huang P
    Antioxid Redox Signal; 2008 Aug; 10(8):1343-74. PubMed ID: 18522489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms.
    Mikkelsen RB; Wardman P
    Oncogene; 2003 Sep; 22(37):5734-54. PubMed ID: 12947383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.