These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37751903)

  • 1. Tapping Into Skeletal Muscle Biomechanics for Design and Control of Lower Limb Exoskeletons: A Narrative Review.
    Mahdian ZS; Wang H; Refai MIM; Durandau G; Sartori M; MacLean MK
    J Appl Biomech; 2023 Oct; 39(5):318-333. PubMed ID: 37751903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exoskeleton Application to Military Manual Handling Tasks.
    Proud JK; Lai DTH; Mudie KL; Carstairs GL; Billing DC; Garofolini A; Begg RK
    Hum Factors; 2022 May; 64(3):527-554. PubMed ID: 33203237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of the design of load-carrying exoskeletons.
    Liang J; Zhang Q; Liu Y; Wang T; Wan G
    Sci China Technol Sci; 2022; 65(9):2051-2067. PubMed ID: 36032505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.
    Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace.
    Mohamed Refai MI; Moya-Esteban A; van Zijl L; van der Kooij H; Sartori M
    Wearable Technol; 2024; 5():e6. PubMed ID: 38510984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement.
    Tang X; Wang X; Ji X; Zhou Y; Yang J; Wei Y; Zhang W
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic ankle exoskeletons influence soleus fascicle dynamics during unexpected perturbations.
    Williamson JL; Lichtwark GA; Dick TJM
    J Biomech; 2023 Oct; 159():111775. PubMed ID: 37672852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review.
    Kian A; Widanapathirana G; Joseph AM; Lai DTH; Begg R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.
    Robertson BD; Farris DJ; Sawicki GS
    Bioinspir Biomim; 2014 Nov; 9(4):046018. PubMed ID: 25417578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Facilitators, Barriers, and Potential Solutions of Adopting Exoskeletons and Exosuits in Construction Workplaces.
    Mahmud D; Bennett ST; Zhu Z; Adamczyk PG; Wehner M; Veeramani D; Dai F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Simulation of a Human Knee Exoskeleton's Assistive Strategies and Interaction.
    Zhang L; Liu Y; Wang R; Smith C; Gutierrez-Farewik EM
    Front Neurorobot; 2021; 15():620928. PubMed ID: 33762922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.