These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37752174)

  • 1. The influence of energy and temperature distributions on EHD destabilization of an Oldroyd-B liquid jet.
    Moatimid GM; Amer MFE
    Sci Rep; 2023 Sep; 13(1):16118. PubMed ID: 37752174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear EHD instability of two viscoelastic fluids under the influence of mass and heat transfer.
    Moatimid GM; Zekry MH; Ibrahim DA
    Sci Rep; 2023 Jan; 13(1):357. PubMed ID: 36611060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat and mass flux analysis of magneto-free-convection flow of Oldroyd-B fluid through porous layered inclined plate.
    Riaz MB; Ur Rehman A; Wojciechowski A; Atangana A
    Sci Rep; 2023 Jan; 13(1):653. PubMed ID: 36635314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics of moderately stretched electrified jets in electrohydrodynamic jet printing.
    Singh AK; Choubey A; Srivastava RK; Bahga SS
    Phys Rev E; 2023 Apr; 107(4-2):045103. PubMed ID: 37198839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk.
    Hafeez A; Khan M; Ahmed J
    Comput Methods Programs Biomed; 2020 Jul; 191():105342. PubMed ID: 32113101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of heat and mass transfer of generalized MHD Oldroyd-B bio-nano fluid in a permeable medium with ramped conditions.
    Wang F; Rehman S; Bouslimi J; Khaliq H; Qureshi MI; Kamran M; Alharbi AN; Ahmad H; Farooq A
    Sci Rep; 2021 Dec; 11(1):23454. PubMed ID: 34873194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fractional model of magnetohydrodynamics Oldroyd-B fluid with couple stresses, heat and mass transfer: A comparison among Non-Newtonian fluid models.
    Arif M; Kumam P; Seangwattana T; Suttiarporn P
    Heliyon; 2023 Jul; 9(7):e17642. PubMed ID: 37483816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime.
    Gu S; Wang L; Hung DLS
    Phys Rev E; 2017 Jun; 95(6-1):063112. PubMed ID: 28709223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of liquid instabilities with ionized gas jets.
    Park S; Choe W; Lee H; Park JY; Kim J; Moon SY; Cvelbar U
    Nature; 2021 Apr; 592(7852):49-53. PubMed ID: 33790448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetized stratified rotating shear waves.
    Salhi A; Lehner T; Godeferd F; Cambon C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026301. PubMed ID: 22463311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear stability of a circular Couette flow under a radial thermoelectric body force.
    Yoshikawa HN; Meyer A; Crumeyrolle O; Mutabazi I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033003. PubMed ID: 25871198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Gravitational Stability of the Interface between Two Electrorheological Fluids.
    El-Dib YO
    J Colloid Interface Sci; 1997 Feb; 186(1):29-39. PubMed ID: 9056294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and Concentration Stratification Effects in Mixed Convection Flow of an Oldroyd-B Fluid with Thermal Radiation and Chemical Reaction.
    Hayat T; Muhammad T; Shehzad SA; Alsaedi A
    PLoS One; 2015; 10(6):e0127646. PubMed ID: 26102200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow of Oldroyd-B fluid over a rotating disk with Cattaneo-Christov theory for heat and mass fluxes.
    Hafeez A; Khan M; Ahmed J
    Comput Methods Programs Biomed; 2020 Jul; 191():105374. PubMed ID: 32114417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instability of a charged non-Newtonian liquid jet.
    Ruo AC; Chen KH; Chang MH; Chen F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016306. PubMed ID: 22400657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient lattice Boltzmann method for electrohydrodynamic solid-liquid phase change.
    Luo K; PĂ©rez AT; Wu J; Yi HL; Tan HP
    Phys Rev E; 2019 Jul; 100(1-1):013306. PubMed ID: 31499901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Computational Methodology for Modeling Electrohydrodynamic Flows: Prediction and Optimization Capability for the Generation of Bubbles and Fibers.
    Aramide B; Kothandaraman A; Edirisinghe M; Jayasinghe SN; Ventikos Y
    Langmuir; 2019 Aug; 35(31):10203-10212. PubMed ID: 30892903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrohydrodynamic instability of ion-concentration shock wave in electrophoresis.
    Gaur R; Bahga SS
    Phys Rev E; 2017 Jun; 95(6-1):063109. PubMed ID: 28709201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid.
    Hayat T; Khan SA; Ijaz Khan M; Momani S; Alsaedi A
    Comput Methods Programs Biomed; 2020 Apr; 187():105247. PubMed ID: 31812885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.