These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37752230)

  • 1. Principal component analysis-artificial neural network-based model for predicting the static strength of seasonally frozen soils.
    Sun Y; Zhou S; Meng S; Wang M; Mu H
    Sci Rep; 2023 Sep; 13(1):16085. PubMed ID: 37752230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of freeze‒thaw cycles on root-Soil composite mechanical properties and slope stability.
    Wang R; Jing Z; Luo H; Bao S; Jia J; Zhan X
    PLoS One; 2024; 19(4):e0302409. PubMed ID: 38662726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the strength of soil stabilized with cement and lime at optimal compaction using ensemble-based multiple machine learning.
    Onyelowe KC; Moghal AAB; Ebid A; Rehman AU; Hanandeh S; Priyan V
    Sci Rep; 2024 Jul; 14(1):15308. PubMed ID: 38961241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance.
    Wan Z; Xu Y; Šavija B
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models.
    Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T
    Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling soil loss under rainfall events using machine learning algorithms.
    Chen Y; Li J; Zhang Z; Jiao J; Wang N; Bai L; Liang Y; Xu Q; Zhang S
    J Environ Manage; 2024 Feb; 352():120004. PubMed ID: 38218170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
    Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY
    Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of 5-day biochemical oxygen demand in the Buriganga River of Bangladesh using novel hybrid machine learning algorithms.
    Nafsin N; Li J
    Water Environ Res; 2022 May; 94(5):e10718. PubMed ID: 35502725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of mustard yield using different machine learning techniques: a case study of Rajasthan, India.
    Vashisth A; Goyal A
    Int J Biometeorol; 2023 Mar; 67(3):539-551. PubMed ID: 36717403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of ischemic stroke diagnosis models based on machine learning.
    Yang WX; Wang FF; Pan YY; Xie JQ; Lu MH; You CG
    Front Neurol; 2022; 13():1014346. PubMed ID: 36545400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostate Cancer Risk Prediction and Online Calculation Based on Machine Learning Algorithm.
    Wang C; Chang QX; Wang XM; Wang KY; Wang H; Cui Z; Li CP
    Chin Med Sci J; 2022 Sep; 37(3):210-217. PubMed ID: 36321176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral band selection and modeling of soil organic matter content in a forest using the Ranger algorithm.
    Shi Y; Zhao J; Song X; Qin Z; Wu L; Wang H; Tang J
    PLoS One; 2021; 16(6):e0253385. PubMed ID: 34181687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principal component analysis-multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy.
    Sadrara M; Khorrami MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122944. PubMed ID: 37269660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap-filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis.
    Kim Y; Johnson MS; Knox SH; Black TA; Dalmagro HJ; Kang M; Kim J; Baldocchi D
    Glob Chang Biol; 2020 Mar; 26(3):1499-1518. PubMed ID: 31553826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system.
    Das J; Kumar S; Mishra DC; Chaturvedi KK; Paul RK; Kairi A
    Front Genet; 2022; 13():1085332. PubMed ID: 36699447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy.
    Wang D; Larder B; Revell A; Montaner J; Harrigan R; De Wolf F; Lange J; Wegner S; Ruiz L; Pérez-Elías MJ; Emery S; Gatell J; D'Arminio Monforte A; Torti C; Zazzi M; Lane C
    Artif Intell Med; 2009 Sep; 47(1):63-74. PubMed ID: 19524413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model.
    Bhagat SK; Pyrgaki K; Salih SQ; Tiyasha T; Beyaztas U; Shahid S; Yaseen ZM
    Chemosphere; 2021 Aug; 276():130162. PubMed ID: 34088083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning and deep learning methods that use omics data for metastasis prediction.
    Albaradei S; Thafar M; Alsaedi A; Van Neste C; Gojobori T; Essack M; Gao X
    Comput Struct Biotechnol J; 2021; 19():5008-5018. PubMed ID: 34589181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of soil urea conversion and quantification of the importance degrees of influencing factors through a new combinatorial model based on cluster method and artificial neural network.
    Lei T; Guo X; Sun X; Ma J; Zhang S; Zhang Y
    Chemosphere; 2018 May; 199():676-683. PubMed ID: 29471238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.