These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37752753)

  • 1. Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting.
    Choi H; Seo S; Yoon CJ; Ahn JB; Kim CS; Jung Y; Kim Y; Toma FM; Kim H; Lee S
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303106. PubMed ID: 37752753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploratory Study of Zn
    Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting.
    Wang W; Xu M; Xu X; Zhou W; Shao Z
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):136-152. PubMed ID: 30790407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites.
    Kim D; Lee DK; Kim SM; Park W; Sim U
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical study of carbon-modified p-type Cu
    Kaneza N; Shinde PS; Ma Y; Pan S
    RSC Adv; 2019 Apr; 9(24):13576-13585. PubMed ID: 35519550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting.
    Wei S; Xia X; Bi S; Hu S; Wu X; Hsu HY; Zou X; Huang K; Zhang DW; Sun Q; Bard AJ; Yu ET; Ji L
    Chem Soc Rev; 2024 Jul; 53(13):6860-6916. PubMed ID: 38833171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting.
    Kang Y; Chen R; Zhen C; Wang L; Liu G; Cheng HM
    Sci Bull (Beijing); 2020 Jul; 65(14):1163-1169. PubMed ID: 36659145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects.
    Luo Z; Wang T; Gong J
    Chem Soc Rev; 2019 Apr; 48(7):2158-2181. PubMed ID: 30601502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction.
    Fu HC; Varadhan P; Lin CH; He JH
    Nat Commun; 2020 Aug; 11(1):3930. PubMed ID: 32764537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for stable water splitting via protected photoelectrodes.
    Bae D; Seger B; Vesborg PC; Hansen O; Chorkendorff I
    Chem Soc Rev; 2017 Apr; 46(7):1933-1954. PubMed ID: 28246670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale.
    Wang W; Radmilovic A; Choi KS; Galli G
    Acc Chem Res; 2021 Oct; 54(20):3863-3872. PubMed ID: 34619961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu-Ion-Implanted and Polymeric Carbon Nitride-Decorated TiO
    Wang L; Si W; Ye Y; Wang S; Hou F; Hou X; Cai H; Dou SX; Liang J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44184-44194. PubMed ID: 34499482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting.
    Cai M; Tong X; Zhao H; Li X; You Y; Wang R; Xia L; Zhou N; Wang L; Wang ZM
    Small; 2022 Nov; 18(46):e2204495. PubMed ID: 36148833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting.
    Zhou J; Cheng H; Cheng J; Wang L; Xu H
    Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting.
    Edwardes Moore E; Andrei V; Zacarias S; Pereira IAC; Reisner E
    ACS Energy Lett; 2020 Jan; 5(1):232-237. PubMed ID: 32010793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting.
    Wang X; Ma S; Liu B; Wang S; Huang W
    Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.