BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37752787)

  • 1. Effects of tail nerve electrical stimulation on the activation and plasticity of the lumbar locomotor circuits and the prevention of skeletal muscle atrophy after spinal cord transection in rats.
    Liu JL; Chen ZH; Wu RJ; Yu HY; Yang SB; Xu J; Wu CR; Guo YN; Hua N; Zeng X; Ma YH; Li G; Zhang L; Chen YF; Zeng YS; Ding Y; Lai BQ
    CNS Neurosci Ther; 2024 Mar; 30(3):e14445. PubMed ID: 37752787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury.
    Lai BQ; Wu RJ; Han WT; Bai YR; Liu JL; Yu HY; Yang SB; Wang LJ; Ren JL; Ding Y; Li G; Zeng X; Ma YH; Quan Q; Xing LY; Jiang B; Wang YQ; Zhang L; Chen ZH; Zhang HB; Chen YF; Zheng QJ; Zeng YS
    Biomaterials; 2023 Jun; 297():122103. PubMed ID: 37028111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats.
    Zhang YT; Jin H; Wang JH; Wen LY; Yang Y; Ruan JW; Zhang SX; Ling EA; Ding Y; Zeng YS
    Neural Plast; 2017; 2017():7351238. PubMed ID: 28744378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.
    Liu JL; Wang S; Chen ZH; Wu RJ; Yu HY; Yang SB; Xu J; Guo YN; Ding Y; Li G; Zeng X; Ma YH; Gong YL; Wu CR; Zhang LX; Zeng YS; Lai BQ
    Front Immunol; 2023; 14():1153516. PubMed ID: 37388732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.
    Zhang SX; Huang F; Gates M; White J; Holmberg EG
    J Neurosci Methods; 2010 Mar; 187(2):183-9. PubMed ID: 20079372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of neonatal spinal transection and dorsal rhizotomy on hindlimb muscles.
    Chatzisotiriou AS; Kapoukranidou D; Gougoulias NE; Albani M
    Brain Res Dev Brain Res; 2005 Jun; 157(2):113-23. PubMed ID: 15921763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tail spasms in rat spinal cord injury: changes in interneuronal connectivity.
    Kapitza S; Zörner B; Weinmann O; Bolliger M; Filli L; Dietz V; Schwab ME
    Exp Neurol; 2012 Jul; 236(1):179-89. PubMed ID: 22569103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering novel spinal circuits to promote recovery after spinal injury.
    Campos L; Meng Z; Hu G; Chiu DT; Ambron RT; Martin JH
    J Neurosci; 2004 Mar; 24(9):2090-101. PubMed ID: 14999060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spastic tail muscles recover from myofiber atrophy and myosin heavy chain transformations in chronic spinal rats.
    Harris RL; Putman CT; Rank M; Sanelli L; Bennett DJ
    J Neurophysiol; 2007 Feb; 97(2):1040-51. PubMed ID: 17122320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats.
    Higashino K; Matsuura T; Suganuma K; Yukata K; Nishisho T; Yasui N
    J Neuroeng Rehabil; 2013 May; 10():46. PubMed ID: 23687941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.
    Jiang YQ; Zaaimi B; Martin JH
    J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of embryonic neurons for 1 hour improves axon regeneration and the number of reinnervated muscles that function.
    Liu Y; Grumbles RM; Thomas CK
    J Neuropathol Exp Neurol; 2013 Jul; 72(7):697-707. PubMed ID: 23771218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disuse muscle atrophy exacerbates motor neuronal degeneration caudal to the site of spinal cord injury.
    Ohnishi Y; Iwatsuki K; Shinzawa K; Nakai Y; Ishihara M; Yoshimine T
    Neuroreport; 2012 Feb; 23(3):157-61. PubMed ID: 22182976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innervation of the caudal denervated ventral roots and their target muscles by the rostral spinal motoneurons after implanting a nerve autograft in spinal cord-injured adult marmosets.
    Liu S; Aghakhani N; Boisset N; Said G; Tadie M
    J Neurosurg; 2001 Jan; 94(1 Suppl):82-90. PubMed ID: 11147873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary afferent fibers that contribute to increased substance P receptor internalization in the spinal cord after injury.
    Allen BJ; Li J; Menning PM; Rogers SD; Ghilardi J; Mantyh PW; Simone DA
    J Neurophysiol; 1999 Mar; 81(3):1379-90. PubMed ID: 10085363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human spinal locomotor control is based on flexibly organized burst generators.
    Danner SM; Hofstoetter US; Freundl B; Binder H; Mayr W; Rattay F; Minassian K
    Brain; 2015 Mar; 138(Pt 3):577-88. PubMed ID: 25582580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innervation and properties of the rat FDSBQ muscle: an animal model to evaluate voluntary muscle strength after incomplete spinal cord injury.
    Thomas CK; Esipenko V; Xu XM; Madsen PW; Gordon T
    Exp Neurol; 1999 Aug; 158(2):279-89. PubMed ID: 10415136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.