BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37753165)

  • 1. Fabrication of deformable patient-specific AAA models by material casting techniques.
    Antonuccio MN; Gasparotti E; Bardi F; Monteleone A; This A; Rouet L; Avril S; Celi S
    Front Cardiovasc Med; 2023; 10():1141623. PubMed ID: 37753165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated particle image velocimetry and fluid-structure interaction analysis for patient-specific abdominal aortic aneurysm studies.
    Özcan C; Kocatürk Ö; Işlak C; Öztürk C
    Biomed Eng Online; 2023 Dec; 22(1):113. PubMed ID: 38044423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Low-Cost Patient-Specific Vascular Models for Particle Image Velocimetry.
    Falk KL; Medero R; Roldán-Alzate A
    Cardiovasc Eng Technol; 2019 Sep; 10(3):500-507. PubMed ID: 31098919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms.
    Ho WH; Tshimanga IJ; Ngoepe MN; Jermy MC; Geoghegan PH
    Cardiovasc Eng Technol; 2020 Feb; 11(1):14-23. PubMed ID: 31820351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry.
    Chung M; Radacsi N; Robert C; McCarthy ED; Callanan A; Conlisk N; Hoskins PR; Koutsos V
    3D Print Med; 2018; 4(1):2. PubMed ID: 29782613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D reconstruction and manufacture of real abdominal aortic aneurysms: from CT scan to silicone model.
    Doyle BJ; Morris LG; Callanan A; Kelly P; Vorp DA; McGloughlin TM
    J Biomech Eng; 2008 Jun; 130(3):034501. PubMed ID: 18532870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Validation of Additively Manufactured Injection Molds.
    Lay Y; Roj R; Bonnet M; Theiß R; Dültgen P
    3D Print Addit Manuf; 2023 Apr; 10(2):226-235. PubMed ID: 37123517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Use of Additive Manufacturing Techniques in the Development of Polymeric Molds: A Review.
    Pelin G; Sonmez M; Pelin CE
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel 3-Dimensional Printing Fabrication Approach for the Production of Pediatric Airway Models.
    Weatherall AD; Rogerson MD; Quayle MR; Cooper MG; McMenamin PG; Adams JW
    Anesth Analg; 2021 Nov; 133(5):1251-1259. PubMed ID: 33181556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endovascular repair of abdominal aortic aneurysm: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2002; 2(1):1-46. PubMed ID: 23074438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging Properties of Additive Manufactured (3D Printed) Materials for Potential Use for Phantom Models.
    Silvestro E; Betts KN; Francavilla ML; Andronikou S; Sze RW
    J Digit Imaging; 2020 Apr; 33(2):456-464. PubMed ID: 31520278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus.
    Allard L; Soulez G; Chayer B; Qin Z; Roy D; Cloutier G
    Med Phys; 2013 Jun; 40(6):063701. PubMed ID: 23718616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques.
    Yazdi SG; Geoghegan PH; Docherty PD; Jermy M; Khanafer A
    Ann Biomed Eng; 2018 Nov; 46(11):1697-1721. PubMed ID: 29987543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of a Limited Field-of-View on Computed Hemodynamics in Abdominal Aortic Aneurysms: Evaluating the Feasibility of Completing Ultrasound Segmentations with Parametric Geometries.
    Fonken J; Maas E; Nievergeld A; van Sambeek M; van de Vosse F; Lopata R
    Ann Biomed Eng; 2023 Jun; 51(6):1296-1309. PubMed ID: 36709232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed metal molds for hot embossing plastic microfluidic devices.
    Lin TY; Do T; Kwon P; Lillehoj PB
    Lab Chip; 2017 Jan; 17(2):241-247. PubMed ID: 27934978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D segmentation of exterior wall surface of abdominal aortic aneurysm from CT images using variable neighborhood search.
    Siriapisith T; Kusakunniran W; Haddawy P
    Comput Biol Med; 2019 Apr; 107():73-85. PubMed ID: 30782525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molds with Advanced Materials for Carbon Fiber Manufacturing with 3D Printing Technology.
    Ferretti P; Santi GM; Leon-Cardenas C; Freddi M; Donnici G; Frizziero L; Liverani A
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling.
    Chen CY; Antón R; Hung MY; Menon P; Finol EA; Pekkan K
    J Biomech Eng; 2014 Mar; 136(3):031001. PubMed ID: 24316984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A methodology for developing anisotropic AAA phantoms via additive manufacturing.
    Ruiz de Galarreta S; Antón R; Cazón A; Finol EA
    J Biomech; 2017 May; 57():161-166. PubMed ID: 28454907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.