BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37753184)

  • 1. Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling.
    Hossain MMN; Hu NW; Abdelhamid M; Singh S; Murfee WL; Balogh P
    Function (Oxf); 2023; 4(6):zqad046. PubMed ID: 37753184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.
    Buchanan CF; Verbridge SS; Vlachos PP; Rylander MN
    Cell Adh Migr; 2014; 8(5):517-24. PubMed ID: 25482628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of shear stress heterogeneity along capillary segments in angiogenic rat mesenteric microvascular networks.
    Hu NW; Lomel BM; Rice EW; Hossain MMN; Sarntinoranont M; Secomb TW; Murfee WL; Balogh P
    Microcirculation; 2023 Nov; 30(8):e12830. PubMed ID: 37688531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.
    Chen CY; Patrick MJ; Corti P; Kowalski W; Roman BL; Pekkan K
    Biorheology; 2011; 48(5):305-21. PubMed ID: 22433571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into shear stress-induced endothelial signalling and barrier function: cell-free fluid versus blood flow.
    Xu S; Li X; LaPenna KB; Yokota SD; Huke S; He P
    Cardiovasc Res; 2017 Apr; 113(5):508-518. PubMed ID: 28158679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature.
    Dabagh M; Randles A
    PLoS One; 2019; 14(2):e0211418. PubMed ID: 30794550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks.
    Ebrahimi S; Bagchi P
    Sci Rep; 2022 Mar; 12(1):4304. PubMed ID: 35277592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D network model of NO transport in tissue.
    Chen X; Buerk DG; Barbee KA; Kirby P; Jaron D
    Med Biol Eng Comput; 2011 Jun; 49(6):633-47. PubMed ID: 21431938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2013 Sep; 43(8):1025-36. PubMed ID: 23816175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting capillary vessel network hemodynamics in silico by machine learning.
    Ebrahimi S; Bagchi P
    PNAS Nexus; 2024 Feb; 3(2):pgae043. PubMed ID: 38725529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of red blood cell dynamics in microvessel bifurcations on the endothelial surface layer's resistance to flow and compression.
    Triebold C; Barber J
    Biomech Model Mechanobiol; 2022 Jun; 21(3):771-796. PubMed ID: 35146594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.