These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37753253)

  • 1. LiPo batteries dataset: Capacity, electrochemical impedance spectra, and fit of equivalent circuit model at various states-of-charge and states-of-health.
    Galeotti M; Cinà L; Giammanco C; Di Carlo A; Santoni F; De Angelis A; Moschitta A; Carbone P
    Data Brief; 2023 Oct; 50():109561. PubMed ID: 37753253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dataset on broadband electrochemical impedance spectroscopy of Lithium-Ion batteries for different values of the state-of-charge.
    Buchicchio E; De Angelis A; Santoni F; Carbone P; Bianconi F; Smeraldi F
    Data Brief; 2022 Dec; 45():108589. PubMed ID: 36160063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of electrochemical impedance spectroscopy response for commercial lithium-ion batteries: modeling of equivalent circuit elements.
    Morali U; Erol S
    Turk J Chem; 2020; 44(3):602-613. PubMed ID: 33488180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the discharge/charge process of lithium-sulfur batteries by electrochemical impedance spectroscopy.
    Qiu X; Hua Q; Zheng L; Dai Z
    RSC Adv; 2020 Jan; 10(9):5283-5293. PubMed ID: 35498290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data on Machine Learning regenerated Lithium-ion battery impedance.
    Temiz S; Kurban H; Erol S; Dalkilic MM
    Data Brief; 2022 Dec; 45():108698. PubMed ID: 36426056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning.
    Zhang Y; Tang Q; Zhang Y; Wang J; Stimming U; Lee AA
    Nat Commun; 2020 Apr; 11(1):1706. PubMed ID: 32249782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.
    Yang Q; Xu J; Cao B; Li X
    PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation.
    Rashid M; Faraji-Niri M; Sansom J; Sheikh M; Widanage D; Marco J
    Data Brief; 2023 Jun; 48():109157. PubMed ID: 37383794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Circuit Model Based State of Health Prognostics for Evaluation of Reusability of Lithium-Ion Batteries from Electric Vehicle.
    Kang H; Oh M; Kim J; Shin E; Hwang K; Kim S; Chi Y; Park C; Yoon S
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance-based forecasting of lithium-ion battery performance amid uneven usage.
    Jones PK; Stimming U; Lee AA
    Nat Commun; 2022 Aug; 13(1):4806. PubMed ID: 35974010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite Gel Polymer Electrolyte for Improved Cyclability in Lithium-Oxygen Batteries.
    Chamaani A; Safa M; Chawla N; El-Zahab B
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33819-33826. PubMed ID: 28876893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-ion battery state of health and failure analysis with mixture weibull and equivalent circuit model.
    Hu W; Qian Q
    iScience; 2024 Jun; 27(6):109980. PubMed ID: 38883833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding.
    Nomura Y; Yamamoto K; Fujii M; Hirayama T; Igaki E; Saitoh K
    Nat Commun; 2020 Jun; 11(1):2824. PubMed ID: 32499493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast electrochemical impedance spectroscopy of lithium-ion batteries based on the large square wave excitation signal.
    Wang L; Song Z; Zhu L; Jiang J
    iScience; 2023 Apr; 26(4):106463. PubMed ID: 37091253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.
    Sun YH; Dong PP; Lang X; Chen HY; Nan JM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5880-8. PubMed ID: 26369165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical properties and facile preparation of hollow porous V
    Xue L; Li Y; Lin W; Chen F; Chen G; Chen D
    J Colloid Interface Sci; 2023 May; 638():231-241. PubMed ID: 36738546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High capacity lithium ion batteries composed of cobalt oxide nanoparticle anodes and Raman spectroscopic analysis of nanoparticle strain dynamics in batteries.
    Islam MA; Zuba M; DeBiase V; Noviasky N; Hawley CJ
    Nanotechnology; 2018 Feb; 29(7):075403. PubMed ID: 29244653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiers Memorial Lecture: Lithium air batteries - tracking function and failure.
    Fritzke JB; Ellison JHJ; Brazel L; Horwitz G; Menkin S; Grey CP
    Faraday Discuss; 2024 Jan; 248(0):9-28. PubMed ID: 38105743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ageing characterization data of lithium-ion battery with highly deteriorated state and wide range of state-of-health.
    Xia Z; Abu Qahouq JA
    Data Brief; 2022 Feb; 40():107727. PubMed ID: 35005130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.
    Pandey GP; Klankowski SA; Li Y; Sun XS; Wu J; Rojeski RA; Li J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20909-18. PubMed ID: 26325385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.