BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 37753266)

  • 21. Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation.
    Wei Y; Chen J; Cai GE; Lu W; Xu W; Wang R; Lin Y; Yang C
    Inflammation; 2021 Feb; 44(1):129-147. PubMed ID: 32940818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease.
    Dani M; Wood M; Mizoguchi R; Fan Z; Walker Z; Morgan R; Hinz R; Biju M; Kuruvilla T; Brooks DJ; Edison P
    Brain; 2018 Sep; 141(9):2740-2754. PubMed ID: 30052812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microglial Activation Modulated by P2X4R in Ischemia and Repercussions in Alzheimer's Disease.
    Castillo C; Saez-Orellana F; Godoy PA; Fuentealba J
    Front Physiol; 2022; 13():814999. PubMed ID: 35283778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Microglia in Alzheimer's Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules.
    Althafar ZM
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Alzheimer's disease-associated gene
    Wang SY; Fu XX; Duan R; Wei B; Cao HM; Yan E; Chen SY; Zhang YD; Jiang T
    Neural Regen Res; 2023 Feb; 18(2):434-438. PubMed ID: 35900442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease.
    Fernando KKM; Wijayasinghe YS
    Front Cell Neurosci; 2021; 15():746631. PubMed ID: 34630044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eicosapentaenoic acid attenuates Aβ-induced neurotoxicity by decreasing neuroinflammation through regulation of microglial polarization.
    Dong Y; Long S; Gu Y; Liu W
    Neuro Endocrinol Lett; 2021 May; 42(2):91-98. PubMed ID: 34217166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microglial Immunometabolism in Alzheimer's Disease.
    Shippy DC; Ulland TK
    Front Cell Neurosci; 2020; 14():563446. PubMed ID: 33192310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microglia in Alzheimer's Disease: A Target for Therapeutic Intervention.
    Zhang G; Wang Z; Hu H; Zhao M; Sun L
    Front Cell Neurosci; 2021; 15():749587. PubMed ID: 34899188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs.
    Medrano-Jiménez E; Meza-Sosa KF; Urbán-Aragón JA; Secundino I; Pedraza-Alva G; Pérez-Martínez L
    J Leukoc Biol; 2022 Jul; 112(1):47-77. PubMed ID: 35293018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer's disease: Rational insights for the therapeutic approaches.
    Ahmad MH; Fatima M; Mondal AC
    J Clin Neurosci; 2019 Jan; 59():6-11. PubMed ID: 30385170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia.
    Sudwarts A; Ramesha S; Gao T; Ponnusamy M; Wang S; Hansen M; Kozlova A; Bitarafan S; Kumar P; Beaulieu-Abdelahad D; Zhang X; Collier L; Szekeres C; Wood LB; Duan J; Thinakaran G; Rangaraju S
    Mol Neurodegener; 2022 May; 17(1):33. PubMed ID: 35526014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aβ stimulates microglial activation through antizyme-dependent downregulation of ornithine decarboxylase.
    Cheng YW; Chang CC; Chang TS; Li HH; Hung HC; Liu GY; Lin CL
    J Cell Physiol; 2019 Jun; 234(6):9733-9745. PubMed ID: 30417362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer's disease.
    Liang C; Zou T; Zhang M; Fan W; Zhang T; Jiang Y; Cai Y; Chen F; Chen X; Sun Y; Zhao B; Wang Y; Cui L
    Theranostics; 2021; 11(9):4103-4121. PubMed ID: 33754051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isovitexin-Mediated Regulation of Microglial Polarization in Lipopolysaccharide-Induced Neuroinflammation via Activation of the CaMKKβ/AMPK-PGC-1α Signaling Axis.
    Liu B; Huang B; Hu G; He D; Li Y; Ran X; Du J; Fu S; Liu D
    Front Immunol; 2019; 10():2650. PubMed ID: 31798583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NLRP3 inflammasome inhibition and M1-to-M2 microglial polarization shifting via scoparone-inhibited TLR4 axis in ovariectomy/D-galactose Alzheimer's disease rat model.
    Ibrahim WW; Skalicka-Woźniak K; Budzyńska B; El Sayed NS
    Int Immunopharmacol; 2023 Jun; 119():110239. PubMed ID: 37137264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel strategy for bioactive natural products targeting NLRP3 inflammasome in Alzheimer's disease.
    Yang Z; Liu J; Wei S; Deng J; Feng X; Liu S; Liu M
    Front Pharmacol; 2022; 13():1077222. PubMed ID: 36699095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases.
    Song GJ; Suk K
    Front Aging Neurosci; 2017; 9():139. PubMed ID: 28555105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Curcumin Prevents Neuroinflammation by Inducing Microglia to Transform into the M2-phenotype via CaMKKβ-dependent Activation of the AMP-Activated Protein Kinase Signal Pathway.
    Qiao P; Ma J; Wang Y; Huang Z; Zou Q; Cai Z; Tang Y
    Curr Alzheimer Res; 2020; 17(8):735-752. PubMed ID: 33176649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer's disease.
    Wang Z; Weaver DF
    Int Immunopharmacol; 2022 Sep; 110():109070. PubMed ID: 35978514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.