These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37753817)
1. Study on the dielectrophoretic characteristics of malaria-infected red blood cells. Panklang N; Vijitnukoonpradit K; Putaporntip C; Chotivanich K; Nakano M; Horprathum M; Techaumnat B Electrophoresis; 2023 Dec; 44(23):1837-1846. PubMed ID: 37753817 [TBL] [Abstract][Full Text] [Related]
2. A discrete dielectrophoresis device for the separation of malaria-infected cells. Panklang N; Techaumnat B; Wisitsoraat A; Putaporntip C; Chotivanich K; Suzuki Y Electrophoresis; 2022 Jun; 43(12):1347-1356. PubMed ID: 35338790 [TBL] [Abstract][Full Text] [Related]
3. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells. Panklang N; Techaumnat B; Tanthanuch N; Chotivanich K; Horprathum M; Nakano M Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794040 [TBL] [Abstract][Full Text] [Related]
4. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping. Heida T Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336 [TBL] [Abstract][Full Text] [Related]
5. On the low-frequency dispersion observed in dielectrophoresis spectra. Hughes MP; Clarke KSP; Hoque R; Griffiths OV; Kruchek EJ; Bertagna F; Jeevaratnam K; Lewis R; Labeed FH Electrophoresis; 2024 Jun; 45(11-12):1080-1087. PubMed ID: 38193244 [TBL] [Abstract][Full Text] [Related]
6. Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection. Gascoyne P; Pethig R; Satayavivad J; Becker FF; Ruchirawat M Biochim Biophys Acta; 1997 Jan; 1323(2):240-52. PubMed ID: 9042346 [TBL] [Abstract][Full Text] [Related]
7. Dielectrophoretic detection of electrical property changes of stored human red blood cells. Lavi ED; Crivellari F; Gagnon Z Electrophoresis; 2022 Jun; 43(12):1297-1308. PubMed ID: 35305039 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Extra-Cellular Vesicle Dielectrophoresis and Estimation of Its Electric Properties. Chen H; Yamakawa T; Inaba M; Nakano M; Suehiro J Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590969 [TBL] [Abstract][Full Text] [Related]
9. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines. Torres-Castro K; Honrado C; Varhue WB; Farmehini V; Swami NS Anal Bioanal Chem; 2020 Jun; 412(16):3847-3857. PubMed ID: 32128645 [TBL] [Abstract][Full Text] [Related]
10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
11. Progression of change in membrane capacitance and cytoplasm conductivity of cells during controlled starvation using dual-frequency DEP cytometry. Afshar S; Salimi E; Fazelkhah A; Braasch K; Mishra N; Butler M; Thomson DJ; Bridges GE Anal Chim Acta; 2019 Jun; 1059():59-67. PubMed ID: 30876633 [TBL] [Abstract][Full Text] [Related]
12. Dielectrophoretic Manipulation of Cancer Cells and Their Electrical Characterization. Turcan I; Olariu MA ACS Comb Sci; 2020 Nov; 22(11):554-578. PubMed ID: 32786320 [TBL] [Abstract][Full Text] [Related]
13. Microsample preparation by dielectrophoresis: isolation of malaria. Gascoyne P; Mahidol C; Ruchirawat M; Satayavivad J; Watcharasit P; Becker F Lab Chip; 2002 May; 2(2):70-5. PubMed ID: 15100837 [TBL] [Abstract][Full Text] [Related]
14. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency. Frusawa H Nanoscale Res Lett; 2018 Jun; 13(1):169. PubMed ID: 29881976 [TBL] [Abstract][Full Text] [Related]
15. Dielectrophoretic profiling of erythrocytes to study the impacts of metabolic stress, temperature, and storage duration utilizing a point-and-planar microdevice. Oladokun R; Adekanmbi EO; An V; Gangavaram I; Srivastava SK Sci Rep; 2023 Oct; 13(1):17281. PubMed ID: 37828082 [TBL] [Abstract][Full Text] [Related]
16. Size and medium conductivity dependence on dielectrophoretic behaviors of gas core poly-L-lysine shell nanoparticles. Yang C; Wu CJ; Ostafin AE; Thibaudeau G; Minerick AR Electrophoresis; 2015 Apr; 36(7-8):1002-10. PubMed ID: 25640705 [TBL] [Abstract][Full Text] [Related]
17. The surface conductance of red blood cells and platelets is modulated by the cell membrane potential. Hughes MP Electrophoresis; 2023 May; 44(9-10):845-853. PubMed ID: 36857493 [TBL] [Abstract][Full Text] [Related]
18. High frequency dielectrophoretic response of microalgae over time. Hadady H; Wong JJ; Hiibel SR; Redelman D; Geiger EJ Electrophoresis; 2014 Dec; 35(24):3533-40. PubMed ID: 25229637 [TBL] [Abstract][Full Text] [Related]
19. Bovine red blood cell starvation age discrimination through a glutaraldehyde-amplified dielectrophoretic approach with buffer selection and membrane cross-linking. Gagnon Z; Gordon J; Sengupta S; Chang HC Electrophoresis; 2008 Jun; 29(11):2272-9. PubMed ID: 18548460 [TBL] [Abstract][Full Text] [Related]
20. Using dielectrophoretic spectra to identify and separate viable yeast cells. Bunthawin S; Srichan P; Jaruwongrungsee K; Ritchie RJ Appl Microbiol Biotechnol; 2023 Dec; 107(24):7647-7655. PubMed ID: 37815615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]