These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37753922)

  • 1. Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration.
    Nguyen D; Wu J; Corrigan P; Li Y
    Nanoscale; 2023 Oct; 15(39):16112-16130. PubMed ID: 37753922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid bilayer disruption induced by amphiphilic Janus nanoparticles: the non-monotonic effect of charged lipids.
    Lee K; Yu Y
    Soft Matter; 2019 Mar; 15(11):2373-2380. PubMed ID: 30806418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity
    Lin X; Lin X
    Biomater Sci; 2021 Dec; 9(24):8249-8258. PubMed ID: 34757373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance.
    Lee K; Yu Y
    Langmuir; 2018 Oct; 34(41):12387-12393. PubMed ID: 30239206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry.
    Ou L; Corradi V; Tieleman DP; Liang Q
    J Phys Chem B; 2020 Jun; 124(22):4466-4475. PubMed ID: 32392064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles.
    Lee K; Zhang L; Yi Y; Wang X; Yu Y
    ACS Nano; 2018 Apr; 12(4):3646-3657. PubMed ID: 29617553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain-selective disruption and compression of phase-separated lipid vesicles by amphiphilic Janus nanoparticles.
    Wiemann JT; Nguyen D; Li Y; Yu Y
    iScience; 2022 Dec; 25(12):105525. PubMed ID: 36465108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained molecular dynamics simulation for uptake of nanoparticles into a charged lipid vesicle dominated by electrostatic interactions.
    Shimokawa N; Ito H; Higuchi Y
    Phys Rev E; 2019 Jul; 100(1-1):012407. PubMed ID: 31499808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study.
    Van Lehn RC; Alexander-Katz A
    PLoS One; 2019; 14(1):e0209492. PubMed ID: 30625163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent interaction of hydrophilic/hydrophobic ligand functionalized cationic and anionic nanoparticles with lipid bilayers.
    Kumar Basak U; Roobala C; Basu JK; Maiti PK
    J Phys Condens Matter; 2020 Mar; 32(10):104003. PubMed ID: 31722322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of positively charged sites in the interaction between model cell membranes and γ-Fe
    Zhang H; Wei X; Liu L; Zhang Q; Jiang W
    Sci Total Environ; 2019 Jul; 673():414-423. PubMed ID: 30991331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles.
    Wiemann JT; Shen Z; Ye H; Li Y; Yu Y
    Nanoscale; 2020 Oct; 12(39):20326-20336. PubMed ID: 33006360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z; Baker W; Ye H; Li Y
    Nanoscale; 2019 Apr; 11(15):7371-7385. PubMed ID: 30938720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles.
    Lee OS; Schatz GC
    Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.