These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 37754427)
1. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Lázár I; Čelko L; Menelaou M Gels; 2023 Sep; 9(9):. PubMed ID: 37754427 [TBL] [Abstract][Full Text] [Related]
2. 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering. Iglesias-Mejuto A; García-González CA Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335542 [TBL] [Abstract][Full Text] [Related]
3. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056 [TBL] [Abstract][Full Text] [Related]
4. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels. Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277 [TBL] [Abstract][Full Text] [Related]
5. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. Karamikamkar S; Yalcintas EP; Haghniaz R; de Barros NR; Mecwan M; Nasiri R; Davoodi E; Nasrollahi F; Erdem A; Kang H; Lee J; Zhu Y; Ahadian S; Jucaud V; Maleki H; Dokmeci MR; Kim HJ; Khademhosseini A Adv Sci (Weinh); 2023 Aug; 10(23):e2204681. PubMed ID: 37217831 [TBL] [Abstract][Full Text] [Related]
6. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure. Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718 [TBL] [Abstract][Full Text] [Related]
8. Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Liu S; Zhou C; Mou S; Li J; Zhou M; Zeng Y; Luo C; Sun J; Wang Z; Xu W Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110137. PubMed ID: 31546424 [TBL] [Abstract][Full Text] [Related]
9. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Yahya EB; Amirul AA; H P S AK; Olaiya NG; Iqbal MO; Jummaat F; A K AS; Adnan AS Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34067569 [TBL] [Abstract][Full Text] [Related]
10. Preparation and Characterization of Nanocellulose/Chitosan Aerogel Scaffolds Using Chemical-Free Approach. Rizal S; Yahya EB; Abdul Khalil HPS; Abdullah CK; Marwan M; Ikramullah I; Muksin U Gels; 2021 Dec; 7(4):. PubMed ID: 34940306 [TBL] [Abstract][Full Text] [Related]
11. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Khan NR; Sharmin T; Bin Rashid A Heliyon; 2024 Jan; 10(1):e23102. PubMed ID: 38163169 [TBL] [Abstract][Full Text] [Related]
12. Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects. Zhang Y; Yin C; Cheng Y; Huang X; Liu K; Cheng G; Li Z Adv Wound Care (New Rochelle); 2020 Aug; 9(8):441-452. PubMed ID: 32857019 [No Abstract] [Full Text] [Related]
13. Synthesis, drying process and medical application of polysaccharide-based aerogels. El-Naggar ME; Othman SI; Allam AA; Morsy OM Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101 [TBL] [Abstract][Full Text] [Related]
14. Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review. Fijalkowski M; Ali A; Qamer S; Coufal R; Adach K; Petrik S Gels; 2023 Dec; 10(1):. PubMed ID: 38275842 [TBL] [Abstract][Full Text] [Related]
15. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Iglesias-Mejuto A; Magariños B; Ferreira-Gonçalves T; Starbird-Pérez R; Álvarez-Lorenzo C; Reis CP; Ardao I; García-González CA Carbohydr Polym; 2024 Jan; 324():121536. PubMed ID: 37985110 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared via Two Different Drying Techniques. Wang Z; Zhu W; Huang R; Zhang Y; Jia C; Zhao H; Chen W; Xue Y Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33153103 [TBL] [Abstract][Full Text] [Related]
18. Emerging Trends in Nanotechnology: Aerogel-Based Materials for Biomedical Applications. Bakhori NM; Ismail Z; Hassan MZ; Dolah R Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985957 [TBL] [Abstract][Full Text] [Related]
19. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. Iglesias-Mejuto A; García-González CA Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112525. PubMed ID: 34857304 [TBL] [Abstract][Full Text] [Related]
20. Bioengineering Composite Aerogel-Based Scaffolds That Influence Porous Microstructure, Mechanical Properties and In Vivo Regeneration for Bone Tissue Application. Souto-Lopes M; Fernandes MH; Monteiro FJ; Salgado CL Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]