These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37754683)

  • 1. Glycine fermentation by
    Rizvi A; Vargas-Cuebas G; Edwards AN; DiCandia MA; Carter ZA; Lee CD; Monteiro MP; McBride SM
    Infect Immun; 2023 Oct; 91(10):e0031923. PubMed ID: 37754683
    [No Abstract]   [Full Text] [Related]  

  • 2. d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
    Johnstone MA; Self WT
    J Bacteriol; 2022 Aug; 204(8):e0022922. PubMed ID: 35862761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline-dependent regulation of Clostridium difficile Stickland metabolism.
    Bouillaut L; Self WT; Sonenshein AL
    J Bacteriol; 2013 Feb; 195(4):844-54. PubMed ID: 23222730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile.
    Edwards AN; Willams CL; Pareek N; McBride SM; Tamayo R
    mSphere; 2021 Dec; 6(6):e0091921. PubMed ID: 34878288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.
    Riedel T; Wetzel D; Hofmann JD; Plorin SPEO; Dannheim H; Berges M; Zimmermann O; Bunk B; Schober I; Spröer C; Liesegang H; Jahn D; Overmann J; Groß U; Neumann-Schaal M
    Int J Med Microbiol; 2017 Sep; 307(6):311-320. PubMed ID: 28619474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C. difficile clnRAB operon initiates adaptations to the host environment in response to LL-37.
    Woods EC; Edwards AN; Childress KO; Jones JB; McBride SM
    PLoS Pathog; 2018 Aug; 14(8):e1007153. PubMed ID: 30125334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway.
    Gencic S; Grahame DA
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967909
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores.
    Ramirez N; Liggins M; Abel-Santos E
    J Bacteriol; 2010 Aug; 192(16):4215-22. PubMed ID: 20562307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Stickland Reaction Precursor
    Reed AD; Fletcher JR; Huang YY; Thanissery R; Rivera AJ; Parsons RJ; Stewart AK; Kountz DJ; Shen A; Balskus EP; Theriot CM
    mSphere; 2022 Apr; 7(2):e0092621. PubMed ID: 35350846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butyrate enhances
    Baldassare MA; Bhattacharjee D; Coles JD; Nelson S; McCollum CA; Seekatz AM
    J Bacteriol; 2023 Sep; 205(9):e0013823. PubMed ID: 37655912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.
    Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A
    mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

  • 14. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.
    Edwards AN; Nawrocki KL; McBride SM
    Infect Immun; 2014 Oct; 82(10):4276-91. PubMed ID: 25069979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant.
    Leslie JL; Jenior ML; Vendrov KC; Standke AK; Barron MR; O'Brien TJ; Unverdorben L; Thaprawat P; Bergin IL; Schloss PD; Young VB
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785619
    [No Abstract]   [Full Text] [Related]  

  • 16. IL-27 induces LL-37/CRAMP expression from intestinal epithelial cells: implications for immunotherapy of
    Xu B; Wu X; Gong Y; Cao J
    Gut Microbes; 2021; 13(1):1968258. PubMed ID: 34432564
    [No Abstract]   [Full Text] [Related]  

  • 17. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation.
    Lopez CA; Beavers WN; Weiss A; Knippel RJ; Zackular JP; Chazin W; Skaar EP
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744916
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Coullon H; Rifflet A; Wheeler R; Janoir C; Boneca IG; Candela T
    J Biol Chem; 2018 Nov; 293(47):18040-18054. PubMed ID: 30266804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile.
    Childress KO; Edwards AN; Nawrocki KL; Anderson SE; Woods EC; McBride SM
    Infect Immun; 2016 Dec; 84(12):3434-3444. PubMed ID: 27647869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice.
    Hing TC; Ho S; Shih DQ; Ichikawa R; Cheng M; Chen J; Chen X; Law I; Najarian R; Kelly CP; Gallo RL; Targan SR; Pothoulakis C; Koon HW
    Gut; 2013 Sep; 62(9):1295-305. PubMed ID: 22760006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.