These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37754714)
1. Preliminary Studies on the Predation of the Mite Michalska K; Jena MK; Mrowińska A; Nowakowski P; Maciejewska D; Ziółkowska K; Studnicki M; Wit M Insects; 2023 Sep; 14(9):. PubMed ID: 37754714 [TBL] [Abstract][Full Text] [Related]
2. Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the twospotted spider mite Tetranychus urticae. Xu X; Enkegaard A J Insect Sci; 2010; 10():149. PubMed ID: 21070175 [TBL] [Abstract][Full Text] [Related]
3. Ectoparasitism of the Flightless Michalska K; Mrowińska A; Studnicki M Insects; 2023 Jan; 14(2):. PubMed ID: 36835715 [TBL] [Abstract][Full Text] [Related]
4. Predatory interactions between prey affect patch selection by predators. Choh Y; Sabelis MW; Janssen A Behav Ecol Sociobiol; 2017; 71(4):66. PubMed ID: 28356611 [TBL] [Abstract][Full Text] [Related]
5. Influence of a Neonicotinoid Seed Treatment on a Nontarget Herbivore of Soybean (Twospotted Spider Mite) and Diet Switching by a Co-occurring Omnivore (Western Flower Thrips). Brenner R; Prischmann-Voldseth DA Environ Entomol; 2020 Apr; 49(2):461-472. PubMed ID: 32078674 [TBL] [Abstract][Full Text] [Related]
6. Euseiusfinlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): life history and feeding habits on three different types of food. Abdalla AA; Zhang Z; Masters GJ; McNeill S Exp Appl Acarol; 2001; 25(10-11):833-47. PubMed ID: 12455874 [TBL] [Abstract][Full Text] [Related]
7. Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Roda A; Nyrop J; Dicke M; English-Loeb G Oecologia; 2000 Nov; 125(3):428-435. PubMed ID: 28547338 [TBL] [Abstract][Full Text] [Related]
8. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Walzer A; Paulus HF; Schausberger P Bull Entomol Res; 2004 Dec; 94(6):577-84. PubMed ID: 15541196 [TBL] [Abstract][Full Text] [Related]
9. Predation by Allothrombium pulvinum on the spider mites Tetranychus urticae and Amphitetranychus viennensis: predation rate, prey preference and functional response. Hosseini M; Hatami B; Saboori A; Allahyari H; Ashouri A Exp Appl Acarol; 2005; 37(3-4):173-81. PubMed ID: 16323049 [TBL] [Abstract][Full Text] [Related]
10. Diet of a polyphagous arthropod predator affects refuge seeking of its thrips prey. Venzon M; Janssen A; Pallini A; Sabelis MW Anim Behav; 2000 Sep; 60(3):369-375. PubMed ID: 11007646 [TBL] [Abstract][Full Text] [Related]
11. Potential of the predatory mite Phytoseius finitimus (Acari: Phytoseiidae) to feed and reproduce on greenhouse pests. Pappas ML; Xanthis C; Samaras K; Koveos DS; Broufas GD Exp Appl Acarol; 2013 Dec; 61(4):387-401. PubMed ID: 23771476 [TBL] [Abstract][Full Text] [Related]
12. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Venzon M; Janssen A; Sabelis MW Exp Appl Acarol; 2001; 25(10-11):785-808. PubMed ID: 12455871 [TBL] [Abstract][Full Text] [Related]
13. Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Muñoz-Cárdenas K; Fuentes LS; Cantor RF; Rodríguez CD; Janssen A; Sabelis MW Exp Appl Acarol; 2014 Jan; 62(1):19-32. PubMed ID: 23990039 [TBL] [Abstract][Full Text] [Related]
14. Effects of fungicide residues on the survival, fecundity, and predation of the mites Tetranychus urticae (Acari: Tetranychidae) and Galendromus occidentalis (Acari: Phytoseiidae). Alston DG; Thomson SV J Econ Entomol; 2004 Jun; 97(3):950-6. PubMed ID: 15279277 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Transeius montdorensis (Acari: Phytoseiidae) to Other Phytoseiid Mites for the Short-Season Suppression of Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Labbé RM; Gagnier D; Shipp L Environ Entomol; 2019 Apr; 48(2):335-342. PubMed ID: 30851045 [TBL] [Abstract][Full Text] [Related]
16. How to analyse prey preference when prey density varies? A new method to discriminate between effects of gut fullness and prey type composition. Sabelis MW Oecologia; 1990 Mar; 82(3):289-298. PubMed ID: 28312701 [TBL] [Abstract][Full Text] [Related]
17. Functional response of Amblyseius eharai (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Park YG; Lee JH; Lim UT PLoS One; 2021; 16(12):e0260861. PubMed ID: 34855893 [TBL] [Abstract][Full Text] [Related]
18. Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Pallini A; Janssen A; Sabelis MW Oecologia; 1997 Apr; 110(2):179-185. PubMed ID: 28307422 [TBL] [Abstract][Full Text] [Related]
19. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Wiethoff J; Poehling HM; Meyhöfer R Exp Appl Acarol; 2004; 34(3-4):239-61. PubMed ID: 15651523 [TBL] [Abstract][Full Text] [Related]
20. Does Long-Term Feeding on Alternative Prey Affect the Biological Performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the Target Spider Mites? Li YY; Zhang GH; Tian CB; Liu MX; Liu YQ; Liu H; Wang JJ J Econ Entomol; 2017 Jun; 110(3):915-923. PubMed ID: 28334233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]