These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 37754873)
1. Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting. Cavallo A; Al Kayal T; Mero A; Mezzetta A; Guazzelli L; Soldani G; Losi P J Funct Biomater; 2023 Sep; 14(9):. PubMed ID: 37754873 [TBL] [Abstract][Full Text] [Related]
2. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
3. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
4. Marine Collagen-Based Bioink for 3D Bioprinting of a Bilayered Skin Model. Cavallo A; Al Kayal T; Mero A; Mezzetta A; Pisani A; Foffa I; Vecoli C; Buscemi M; Guazzelli L; Soldani G; Losi P Pharmaceutics; 2023 Apr; 15(5):. PubMed ID: 37242573 [TBL] [Abstract][Full Text] [Related]
5. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
6. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
7. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194 [TBL] [Abstract][Full Text] [Related]
8. Polysaccharide-Based Bioink Formulation for 3D Bioprinting of an In Vitro Model of the Human Dermis. Zidarič T; Milojević M; Gradišnik L; Stana Kleinschek K; Maver U; Maver T Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290484 [TBL] [Abstract][Full Text] [Related]
9. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
10. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
11. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
12. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Mörö A; Samanta S; Honkamäki L; Rangasami VK; Puistola P; Kauppila M; Narkilahti S; Miettinen S; Oommen O; Skottman H Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36579828 [TBL] [Abstract][Full Text] [Related]
13. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs. Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961 [TBL] [Abstract][Full Text] [Related]
14. A Three-Dimensional Bioprinted Copolymer Scaffold with Biocompatibility and Structural Integrity for Potential Tissue Regeneration Applications. Peng BY; Ou KL; Liu CM; Chu SF; Huang BH; Cho YC; Saito T; Tsai CH; Hung KS; Lan WC Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015671 [TBL] [Abstract][Full Text] [Related]
15. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252 [TBL] [Abstract][Full Text] [Related]
16. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823 [TBL] [Abstract][Full Text] [Related]
17. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs. Amaral AJR; Gaspar VM; Lavrador P; Mano JF Biofabrication; 2021 May; 13(3):. PubMed ID: 34075894 [TBL] [Abstract][Full Text] [Related]
18. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]