These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37754980)

  • 1. The Adaptation of
    Escobar-Niño A; Harzen A; Stolze SC; Nakagami H; Fernández-Acero FJ
    J Fungi (Basel); 2023 Aug; 9(9):. PubMed ID: 37754980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the Dynamics of Signaling Cascades and Virulence Factors of
    Escobar-Niño A; Morano Bermejo IM; Carrasco Reinado R; Fernandez-Acero FJ
    Microorganisms; 2021 Aug; 9(9):. PubMed ID: 34576732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors.
    Liñeiro E; Chiva C; Cantoral JM; Sabido E; Fernández-Acero FJ
    J Proteomics; 2016 Apr; 139():84-94. PubMed ID: 27003611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains.
    González-Fernández R; Aloria K; Valero-Galván J; Redondo I; Arizmendi JM; Jorrín-Novo JV
    J Proteomics; 2014 Jan; 97():195-221. PubMed ID: 23811051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular vesicles from the apoplastic fungal wheat pathogen
    Hill EH; Solomon PS
    Fungal Biol Biotechnol; 2020; 7():13. PubMed ID: 32968488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation.
    Escobar-Niño A; Liñeiro E; Amil F; Carrasco R; Chiva C; Fuentes C; Blanco-Ulate B; Cantoral Fernández JM; Sabidó E; Fernández-Acero FJ
    Sci Rep; 2019 Jul; 9(1):9860. PubMed ID: 31285484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis of Botrytis cinerea secretome.
    Shah P; Atwood JA; Orlando R; El Mubarek H; Podila GK; Davis MR
    J Proteome Res; 2009 Mar; 8(3):1123-30. PubMed ID: 19140674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo.
    Abyadeh M; Mirshahvaladi S; Kashani SA; Paulo JA; Amirkhani A; Mehryab F; Seydi H; Moradpour N; Jodeiryjabarzade S; Mirzaei M; Gupta V; Shekari F; Salekdeh GH
    J Extracell Biol; 2024 Jun; 3(6):e159. PubMed ID: 38947171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence.
    Ma L; Liu T; Zhang K; Shi H; Zhang L; Zou G; Sharon A
    mSystems; 2022 Dec; 7(6):e0104222. PubMed ID: 36468854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein markers for
    Dawson CS; Garcia-Ceron D; Rajapaksha H; Faou P; Bleackley MR; Anderson MA
    J Extracell Vesicles; 2020; 9(1):1750810. PubMed ID: 32363014
    [No Abstract]   [Full Text] [Related]  

  • 12. Isolation and characterization of extracellular vesicles from biotechnologically important fungus Aureobasidium pullulans.
    Černoša A; Gostinčar C; Lavrin T; Kostanjšek R; Lenassi M; Gunde-Cimerman N
    Fungal Biol Biotechnol; 2022 Nov; 9(1):16. PubMed ID: 36320088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifications of fungal membrane proteins profile under pathogenicity induction: A proteomic analysis of Botrytis cinerea membranome.
    Liñeiro E; Chiva C; Cantoral JM; Sabidó E; Fernández-Acero FJ
    Proteomics; 2016 Sep; 16(17):2363-76. PubMed ID: 27329576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov).
    Garcia-Ceron D; Dawson CS; Faou P; Bleackley MR; Anderson MA
    Proteomics; 2021 Jul; 21(13-14):e2000240. PubMed ID: 33609009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation.
    Fernández-Acero FJ; Colby T; Harzen A; Cantoral JM; Schmidt J
    Proteomics; 2009 May; 9(10):2892-902. PubMed ID: 19415670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis.
    Li B; Wang W; Zong Y; Qin G; Tian S
    J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis.
    He B; Wang H; Liu G; Chen A; Calvo A; Cai Q; Jin H
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant Roots Release Small Extracellular Vesicles with Antifungal Activity.
    De Palma M; Ambrosone A; Leone A; Del Gaudio P; Ruocco M; Turiák L; Bokka R; Fiume I; Tucci M; Pocsfalvi G
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33333782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture.
    Shah P; Gutierrez-Sanchez G; Orlando R; Bergmann C
    Proteomics; 2009 Jun; 9(11):3126-35. PubMed ID: 19526562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis.
    He B; Wang H; Liu G; Chen A; Calvo A; Cai Q; Jin H
    Nat Commun; 2023 Jul; 14(1):4383. PubMed ID: 37474601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.