These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37755073)

  • 1. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro.
    Kubiak A; Pajewska-Szmyt M; Kotula M; Leśniewski B; Voronkina A; Rahimi P; Falahi S; Heimler K; Rogoll A; Vogt C; Ereskovsky A; Simon P; Langer E; Springer A; Förste M; Charitos A; Joseph Y; Jesionowski T; Ehrlich H
    Mar Drugs; 2023 Aug; 21(9):. PubMed ID: 37755073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Spongin Scaffolds as Templates for Electro-Assisted Deposition of Selected Iron Oxides.
    Nowacki K; Kubiak A; Nowicki M; Tsurkan D; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2024 Jun; 9(7):. PubMed ID: 39056828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creation of a 3D Goethite-Spongin Composite Using an Extreme Biomimetics Approach.
    Kubiak A; Voronkina A; Pajewska-Szmyt M; Kotula M; Leśniewski B; Ereskovsky A; Heimler K; Rogoll A; Vogt C; Rahimi P; Falahi S; Galli R; Langer E; Förste M; Charitos A; Joseph Y; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Titanium(IV) Oxide onto 3D Spongin Scaffolds of Marine Sponge Origin According to Extreme Biomimetics Principles for Removal of C.I. Basic Blue 9.
    Szatkowski T; Siwińska-Stefańska K; Wysokowski M; Stelling AL; Joseph Y; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2017 Mar; 2(2):. PubMed ID: 31105167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin-Atacamite Composite and its Application.
    Tsurkan D; Simon P; Schimpf C; Motylenko M; Rafaja D; Roth F; Inosov DS; Makarova AA; Stepniak I; Petrenko I; Springer A; Langer E; Kulbakov AA; Avdeev M; Stefankiewicz AR; Heimler K; Kononchuk O; Hippmann S; Kaiser D; Viehweger C; Rogoll A; Voronkina A; Kovalchuk V; Bazhenov VV; Galli R; Rahimi-Nasrabadi M; Molodtsov SL; Rahimi P; Falahi S; Joseph Y; Vogt C; Vyalikh DV; Bertau M; Ehrlich H
    Adv Mater; 2021 Jul; 33(30):e2101682. PubMed ID: 34085323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lepidocrocite iron mineralization in keratose sponge granules.
    Towe KM; Rützler K
    Science; 1968 Oct; 162(3850):268-9. PubMed ID: 17779380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial.
    Jesionowski T; Norman M; Żółtowska-Aksamitowska S; Petrenko I; Joseph Y; Ehrlich H
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29522478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of C.I. Natural Red 4 onto Spongin Skeleton of Marine Demosponge.
    Norman M; Bartczak P; Zdarta J; Tylus W; Szatkowski T; Stelling AL; Ehrlich H; Jesionowski T
    Materials (Basel); 2014 Dec; 8(1):96-116. PubMed ID: 28787926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization
    Wysokowski M; Machałowski T; Petrenko I; Schimpf C; Rafaja D; Galli R; Ziętek J; Pantović S; Voronkina A; Kovalchuk V; Ivanenko VN; Hoeksema BW; Diaz C; Khrunyk Y; Stelling AL; Giovine M; Jesionowski T; Ehrlich H
    Mar Drugs; 2020 Feb; 18(2):. PubMed ID: 32092907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High affinity of 3D spongin scaffold towards Hg(II) in real waters.
    Domingues EM; Gonçalves G; Henriques B; Pereira E; Marques PAAP
    J Hazard Mater; 2021 Apr; 407():124807. PubMed ID: 33341578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of spongin derived from Hymeniacidon sinapium on bone mineralization.
    Kim MM; Mendis E; Rajapakse N; Lee SH; Kim SK
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):540-6. PubMed ID: 19165732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation.
    Green D; Howard D; Yang X; Kelly M; Oreffo RO
    Tissue Eng; 2003 Dec; 9(6):1159-66. PubMed ID: 14670103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges.
    Petrenko I; Summers AP; Simon P; Żółtowska-Aksamitowska S; Motylenko M; Schimpf C; Rafaja D; Roth F; Kummer K; Brendler E; Pokrovsky OS; Galli R; Wysokowski M; Meissner H; Niederschlag E; Joseph Y; Molodtsov S; Ereskovsky A; Sivkov V; Nekipelov S; Petrova O; Volkova O; Bertau M; Kraft M; Rogalev A; Kopani M; Jesioniowski T; Ehrlich H
    Sci Adv; 2019 Oct; 5(10):eaax2805. PubMed ID: 31620556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A.
    Norman M; Żółtowska-Aksamitowska S; Zgoła-Grześkowiak A; Ehrlich H; Jesionowski T
    J Hazard Mater; 2018 Apr; 347():78-88. PubMed ID: 29291520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcite Nanotuned Chitinous Skeletons of Giant
    Kertmen A; Petrenko I; Schimpf C; Rafaja D; Petrova O; Sivkov V; Nekipelov S; Fursov A; Stelling AL; Heimler K; Rogoll A; Vogt C; Ehrlich H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First report on chitinous holdfast in sponges (Porifera).
    Ehrlich H; Kaluzhnaya OV; Tsurkan MV; Ereskovsky A; Tabachnick KR; Ilan M; Stelling A; Galli R; Petrova OV; Nekipelov SV; Sivkov VN; Vyalikh D; Born R; Behm T; Ehrlich A; Chernogor LI; Belikov S; Janussen D; Bazhenov VV; Wörheide G
    Proc Biol Sci; 2013 Jul; 280(1762):20130339. PubMed ID: 23677340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Three-Dimensional Spongin-Atacamite Biocomposite for Electrochemical Nonenzymatic Glucose Sensing.
    Falahi S; Jaafar A; Petrenko I; Zarejousheghani M; Ehrlich H; Rahimi P; Joseph Y
    ACS Appl Bio Mater; 2022 Feb; 5(2):873-880. PubMed ID: 35050590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.
    Aouacheria A; Geourjon C; Aghajari N; Navratil V; Deléage G; Lethias C; Exposito JY
    Mol Biol Evol; 2006 Dec; 23(12):2288-302. PubMed ID: 16945979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera).
    Ehrlich H; Krautter M; Hanke T; Simon P; Knieb C; Heinemann S; Worch H
    J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):473-83. PubMed ID: 17520693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera).
    Ehrlich H; Maldonado M; Spindler KD; Eckert C; Hanke T; Born R; Goebel C; Simon P; Heinemann S; Worch H
    J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):347-56. PubMed ID: 17285638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.